Skip to main content

Measuring Phenotypic Structural Complexity of Artificial Cellular Organisms

Approximation of Kolmogorov Complexity with Lempel-Ziv Compression

  • Conference paper
Innovations in Bio-inspired Computing and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 237))

Abstract

Artificial multi-cellular organisms develop from a single zygote to different structures and shapes, some simple, some complex. Such phenotypic structural complexity is the result of morphogenesis, where cells grow and differentiate according to the information encoded in the genome. In this paper we investigate the structural complexity of artificial cellular organisms at phenotypic level, in order to understand if genome information could be used to predict the emergent structural complexity. Our measure of structural complexity is based on the theory of Kolmogorov complexity and approximations. We relate the Lambda parameter, with its ability to detect different behavioral regimes, to the calculated structural complexity. It is shown that the easily computable Lempel-Ziv complexity approximation has a good ability to discriminate emergent structural complexity, thus providing a measurement that can be related to a genome parameter for estimation of the developed organism’s phenotypic complexity. The experimental model used herein is based on 1D, 2D and 3D Cellular Automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doursat, R., Sánchez, C., Dordea, R., Fourquet, D., Kowaliw, T.: Embryomorphic engineering: emergent innovation through evolutionary development. In: Doursat, R., Sayama, H., Michel, O. (eds.) Morphogenetic Engineering. UCS Series, pp. 275–311. Springer (2012)

    Google Scholar 

  2. Kumar, S., Bentley, P.J.: Biologically inspired evolutionary development. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 57–68. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from French flag to boolean circuits. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, pp. 278–301. Elsevier Limited, Oxford (2003)

    Chapter  Google Scholar 

  4. Tufte, G.: Evolution, development and environment toward adaptation through phenotypic plasticity and exploitation of external information. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI, pp. 624–631. MIT Press, Cambridge (2008)

    Google Scholar 

  5. Li, M., Vitanyi, P.M.B.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  6. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. In: Forrest, S. (ed.) Emergent Computation, pp. 12–37. MIT Press (1991)

    Google Scholar 

  7. Wolfram, S.: Universality and complexity in CA. Physica D 10(1-2), 1–35 (1984)

    Article  MathSciNet  Google Scholar 

  8. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems Inform. Transmission 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  9. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2 42, 230–265 (1936)

    Google Scholar 

  10. Hartmann, M., Lehre, P.K., Haddow, P.C.: Evolved digital circuits and genome complexity. In: NASA/DoD Conference on Evolvable Hardware 2005, pp. 79–86. IEEE Press (2005)

    Google Scholar 

  11. Lehre, P.K., Haddow, P.C.: Developmental mappings and phenotypic complexity. In: Proceedings of 2003 IEEE CEC, vol. 1, pp. 62–68. IEEE Press (2003)

    Google Scholar 

  12. Deutsch, L.P.: DEFLATE Compressed data format specification version 1.3 (1996)

    Google Scholar 

  13. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E., 1098–1102 (1952)

    Google Scholar 

  15. Tufte, G., Nichele, S.: On the correlations between developmental diversity and genomic composition. In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 1507–1514. ACM (2011)

    Google Scholar 

  16. Nichele, S., Tufte, G.: Genome parameters as information to forecast emergent developmental behaviors. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 186–197. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Kowaliw, T.: Measures of complexity for artificial embryogeny. In: GECCO 2008, pp. 843–850. ACM (2008)

    Google Scholar 

  18. Ulam, S.: Los Alamos National Lab 1909-1984, vol. 15(special issue), pp. 1–318. Los Alamos Science, Los Alamos (1987)

    Google Scholar 

  19. von Neumann, J.: Theory and organization of complicated automata. In: Burks, A.W. (ed.), pp. 29–87 (2, part one). Based on transcript of lectures delivered at the University of Illinois (December 1949)

    Google Scholar 

  20. Zenil, H., Villareal-Zapata, E.: Asymptotic behaviour and ratios of complexity in cellular automata. arXiv/1304.2816 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Nichele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nichele, S., Tufte, G. (2014). Measuring Phenotypic Structural Complexity of Artificial Cellular Organisms. In: Abraham, A., Krömer, P., Snášel, V. (eds) Innovations in Bio-inspired Computing and Applications. Advances in Intelligent Systems and Computing, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-01781-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01781-5_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01780-8

  • Online ISBN: 978-3-319-01781-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics