Skip to main content

P300 Detection in Electroencephalographic Signals for Brain–Computer Interface Systems: A Neural Networks Approach

  • Conference paper
  • First Online:
Computer Engineering and Networking

Abstract

Brain–computer interface systems are communicative mediums between human brain and external device. One of the applications of these systems is P300 speller. This application provides the ability to spell the characters on the screen for disabled people. In this study, we review the character recognition and its relation to P300 detection. Then, we used three neural networks models with flexible activation functions to detect P300 patterns from electroencephalographic signals more accurately. The obtained results have shown the accuracy of the character recognition based on the precision and recall measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain-computer interface systems: Progress and prospects. Expert Review of Medical Devices, 4(4), 463–474.

    Article  Google Scholar 

  2. Birbaumer, N., & Cohen, L. G. (2007). Brain-computer interfaces: Communication and restoration of movement in paralysis. Physiology London, 579(3), 621–636.

    Article  Google Scholar 

  3. Kostov, A., & Polak, M. (2000). Parallel man–machine training in development of EEG-based cursor control. IEEE Transactions on Rehabilitation Engineering, 8(2), 203–205.

    Article  Google Scholar 

  4. Niedermeyer, E., & Lopes, F. d. S. (2004). Electroencephalography: Basic principles, clinical applications and related fields. Lippincott Williams & Wilkins.

    Google Scholar 

  5. Özbay, Y., & Tezel, G. (2010). A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digital Signal Processing, 20(4), 1040–1049.

    Article  Google Scholar 

  6. Zhang, M., Fulcher, J., & Xu, S. (2002). Neuron-adaptive higher order neural network models for automated financial data modeling. IEEE Transactions on Neural Networks, 13(1), 188–204.

    Article  Google Scholar 

  7. Subasi, A., Alkan, A., Koklukaya, E., & Kiymik, M. K. (2005). Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Networks, 18(7), 985–997.

    Article  Google Scholar 

  8. Liu, T. I. (1993). On-line sensing of drill wear using neural network approach. IEEE International Conference on Neural Networks, 2(1), 690–694.

    Article  Google Scholar 

  9. Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: Assessing the speed of a P300-based brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 8(2), 174–179.

    Article  Google Scholar 

  10. Krusienski, D. J., Sellers, E. W., McFarland, D., Vaughan, T. M., & Wolpaw, J. R. (2008). Toward enhanced p300 speller performance. Neuroscience Methods, 167(1), 15–21.

    Article  Google Scholar 

  11. Coles, M. G. H., & Rugg, M. D. (1996). Event-related brain potentials: An introduction. Electrophysiology of mind (pp. 1–27). Oxford Scholarship Online Monographs.

    Google Scholar 

  12. Blankertz, B., Muller, K. R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., et al. (2006). The BCI competition. III: Validating alternative approaches to actual BCI problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 153–159.

    Google Scholar 

  13. Cecotti, H., & Graser, A. (2011). Convolutional neural networks for p300 detection with application to brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3), 433–445.

    Article  Google Scholar 

  14. Blankertz, B. (2008). BCI competition III final results. http://ida.first.fraunhofer.de

  15. Liang, N., & Bougrain, L. (2008). Averaging techniques for single-trial analysis of oddball event-related potentials (pp. 44–49). Proceedings of the Fourth International BCI Workshop and Training Course (INRIA-00337070, version 1).

    Google Scholar 

  16. Rakotomamonjy, A., & Guigue, V. (2008). BCI competition III: Data set II ensemble of SVMs for BCI p300 speller. IEEE Transactions on Biomedical Engineering, 55(3), 1147–1154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Panahian Fard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mousavi, S.A., Arshad, M.R.H.M., Mohamed, H.H., Sumari, P., Fard, S.P. (2014). P300 Detection in Electroencephalographic Signals for Brain–Computer Interface Systems: A Neural Networks Approach. In: Wong, W.E., Zhu, T. (eds) Computer Engineering and Networking. Lecture Notes in Electrical Engineering, vol 277. Springer, Cham. https://doi.org/10.1007/978-3-319-01766-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01766-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01765-5

  • Online ISBN: 978-3-319-01766-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics