Skip to main content

Low Density Parity Check Codes

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The Tanner graph is described. A girth in the Tanner graph is equivalent to a short cycle of 1- symbols in the parity check matrix. The condition called row-column constraint is introduced, in order to allow practical decoding procedures. They are based on the sum-product algorithm, which is briefly outlined. Regular and irregular LDPC codes are introduced. The firstly proposed LDPC codes by Gallager and MacKay-Neal are reviewed. The following main families of more recent LDPC codes are briefly described: codes based on protographs, codes constructed employing repeat and accumulation devices, codes derived from the decomposition of finite geometries, codes obtained starting from MDS codes. Furthermore codes obtained from superimposition or by circulant expansion are analysed. Masking and row or column splitting can be employed for reducing the 1-symbol density and breaking short cycles. The effects of such procedures on the code rate are stressed. For instance, circulant expansion and masking do not vary the code rate, whereas row (column) splitting increases (reduces) it. Irregular LDPC codes can be designed by means of proper rules progressively adding edges to the Tanner graph. A statistical treatment, called density evolution, is presented, in order to obtain asymptotic best performance at different code rates, taking into account the intrinsic nature of the sum-product decoding algorithm. A first approach to LDPC convolutional codes is presented, starting from good known LDPC block codes. The use of unwrapping is suggested, in particular with suitable QC codes, or a derivation from properly modified H-extension is reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasfar A, Divsalar D, Yao K (2007) Accumulate-repeat-accumulate codes. IEEE Trans Commun 55:692–702

    Article  Google Scholar 

  • Ashikhmin A, Kramer G, Ten Brink S (2004) Extrinsic information transfer functions: model and erasure channel properties. IEEE Trans Inf Theory 50:2657–2673

    Article  MATH  Google Scholar 

  • Baldi M, Chiaraluce F (2008) A simple scheme for belief propagation decoding of BCH and RS codes in multimedia transmissions. Int J Dig Multim Broadcas 8:ID957846

    Google Scholar 

  • Baldi M, Bianchi M, Cancellieri G et al (2012) On the generator matrix of array codes. In: Proceedings of Softcom 2012, Split (Croatia)

    Google Scholar 

  • Baldi M, Cancellieri G, Chiaraluce F (2014) Array convolutional low-density parity-check codes. IEEE Commun Lett 18:336–339

    Article  Google Scholar 

  • Chen J, Tanner RM, Jones C, Li Y (2005) Improved min-sum decoding algorithms for irregular LDPC codes. In: Proceedings of international symposium on information theory, 2005, Adelaide (Australia), pp 449–453

    Google Scholar 

  • Costello DJ, Pusane AE, Jones CR, Divsalar D (2007) A comparison of ARA- and protograph-based LDPC block and convolutional codes. In: Information theory and applications workshop, San Diego (CA)

    Google Scholar 

  • Divsalar D, Jin H, McEliece R (1998) Coding theorems for turbo-like codes. In: Proceedings of 36th annual allerton conference on communication, Monticello (IL), pp 201–210

    Google Scholar 

  • Divsalar D, Jones C, Dolinar S, Thorpe J (2005) Protograph based LDPC codes with minimum distance linearly growing with block size. In: Proceedings of IEEE global telecommunications conference, St. Louis (MI), pp 1152–1156

    Google Scholar 

  • Djurdjevic I, Xu J, Abdel-Ghaffar K, Lin S (2003) A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols. IEEE Commun Lett 7:317–319

    Article  Google Scholar 

  • Esmaeli M, Tadayon MH, Gulliver TA (2011) More on the stopping and minimum distances of array codes. IEEE Trans Commun 59:750–757

    Article  Google Scholar 

  • Fossorier MPC (2004) Quasi-cyclic low-density parity check codes from circulant permutation matrices. IEEE Trans Inf Theory 50:1788–1793

    Article  MATH  MathSciNet  Google Scholar 

  • Gallager RG (1962) Low-density parity-check codes. IRE Trans Inf Theory 8:21–28

    Article  MATH  MathSciNet  Google Scholar 

  • Halford TR, Grant AJ, Chugg KM (2006) Which codes have 4-cycle-free Tanner graphs? IEEE Trans Inf Theory 52:4219–4223

    Article  MATH  MathSciNet  Google Scholar 

  • Han Y, Ryan WE (2009) Low-floor decoders for LDPC codes. IEEE Trans Commun 57:1663–1773

    Article  Google Scholar 

  • Hu XY, Eleftheriou E, Arnold DM (2001) Progressive edge-growth Tanner graphs. In: Proceedings on 2001 IEEE global telecommunications conference, San Antonio (TX), pp 995–1001

    Google Scholar 

  • Hu XY, Eleftheriou E, Arnold DM (2005) Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans Inf Theory 51:386–398

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobsen N, Soni R (2007) Design of rate compatible irregular LDPC codes based on edge growth and parity splitting. In: Proceedings IEEE 66th vehicular technology conference, Baltimore (MD), pp 1052–1056

    Google Scholar 

  • Jimenez-Felstrom AJ, Zigangirov KS (1999) Time-varying periodic convolutional codes with low density parity-check matrix. IEEE Trans Inf Theory 45:2181–2191

    Article  MathSciNet  Google Scholar 

  • Jin H, Khandekar A, McEliece R (2000) Irregular repeat-accumulate codes. In: Proceedings of 2nd international conference on turbo codes, Brest (France), pp 1–8

    Google Scholar 

  • Johnson SJ, Weller SR (2004) Codes for iterative decoding from partial geometries. IEEE Trans Commun 52:236–243

    Article  Google Scholar 

  • Kamiya N (2007) High-rate quasi-cyclic low-density parity-check codes derived from finite affine planes. IEEE Trans Inf Theory 53:1444–1459

    Article  MathSciNet  Google Scholar 

  • Kou Y, Lin S, Fossorier MPC (2001) Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans Inf Theory 47:2711–2736

    Article  MATH  MathSciNet  Google Scholar 

  • Kschischang F, Frey B, Loeliger HA (2001) Factor graphs and the sum-product algorithm. IEEE Trans Inf Theory 47:485–519

    Article  MathSciNet  Google Scholar 

  • Lin S, Costello DJ (2004) Error control coding. Pearson/Prentice-Hall, Upper Saddle River

    Google Scholar 

  • MacKay DJC (1999) Good error-correcting codes based on very sparse matrices. IEEE Trans Inf Theory 45:399–431

    Article  MATH  MathSciNet  Google Scholar 

  • MacKay DJC, Davey M (1999) Evaluation of Gallager codes for short block length and high rate applications. In: Proceedings of IMA Workshop codes systems and graphical models, Minneapolis (MN), pp 113–130

    Google Scholar 

  • MacKay DJC, Neal RM (1995) Good codes based on very sparse matrices. In: Boyd C (ed) Proceedings of cryptography and coding 5th IMA conference. Lecture notes computer science. Springer, Berlin, pp 110–111

    Google Scholar 

  • MacKay DJC, Neal RM (1997) Near Shannon limit performance of low density parity check codes. Electron Lett 33:457–458

    Article  Google Scholar 

  • Milenkovic O, Kashyap N, Leyba D (2008) Shortened array codes of large girth. IEEE Trans Inf Theory 52:3707–3722

    Article  MathSciNet  Google Scholar 

  • Mitchell DGM, Pusane AE, Zigangirov KS, Costello DJ (2008) Asymptotically good LDPC convolutional codes based on protographs. Proc ISIT, Toronto (Canada), pp 1030–1034

    Google Scholar 

  • Mittelholzer T (2002) Efficient encoding and minimum distance bound for Reed-Solomon-type array codes. In: Proceedings of ISIT 2002, Lousanne (Switzerland), p 282

    Google Scholar 

  • Oenning TR, Moon J (2001) A low-density generator matrix interpretation of parallel concatenated single bit parity check codes. IEEE Trans Magn Rec 37:737–741

    Article  Google Scholar 

  • Papoulis A (1965) Probability, random variables, and stochastic processes. McGraw Hill, New York

    MATH  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kauffman, San Mateo (CA)

    Google Scholar 

  • Richardson T (2003) Error floors of LDPC codes. In: Proceedings of 41th annual, allerton conference on communications, Monticello (IL), pp 1426–1435

    Google Scholar 

  • Richardson T, Urbanke R (2001) The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans Inf Theory 47:599–618

    Article  MATH  MathSciNet  Google Scholar 

  • Richardson T, Urbanke R (2008) Modern coding theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Richardson J, Shokrollahi A, Urbanke R (2001) Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inf Theory 47:2001

    MathSciNet  Google Scholar 

  • Richter G (2006) Finding small stopping sets in the Tanner graphs of LDPC codes. In: Proceedings of 4th international symposium turbo codes, Munich (Germany)

    Google Scholar 

  • Rudolph LD (1967) A class of majority logic decodable codes. IEEE Trans Inf Theory 13:305–307

    Article  MATH  Google Scholar 

  • Ryan WE, Lin S (2009) Channel codes: classical and modern. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tanner RM (1981) A recursive approach to low complexity codes. IEEE Trans Inf Theory 27:533–547

    Article  MATH  MathSciNet  Google Scholar 

  • Tanner RM, Sridhara D, Sridharan A et al (2004) LDPC block and convolutional codes based on circulant matrices. IEEE Trans Inf Theory 50:2966–2984

    Article  MATH  MathSciNet  Google Scholar 

  • Ten Brink S (2001) Convergence behaviour of iteratively decoded parallel concatenated codes. IEEE Trans Commun 49:1727–1737

    Article  MATH  Google Scholar 

  • Ten Brink S, Kramer G (2003) Design of repeat-accumulate codes for iterative detection and decoding. IEEE Trans Sig Proc 51:2764–2772

    Article  Google Scholar 

  • Thorpe J (2003) Low-density parity-check (LDPC) codes constructed from protographs. JPL INP Prog Rep 42(154):42–154

    Google Scholar 

  • Tian T, Jones G, Villasenor JD, Wesel RD (2004) Selective avoidance of cycles in irregular LDPC code construction. IEEE Trans Commun 52:1242–1247

    Article  Google Scholar 

  • Wang CL, Fossorier MPC (2009) On asymptotic ensemble weight enumerators of LDPC-like codes. IEEE J Sel Areas Commun 27:899–907

    Article  Google Scholar 

  • Xu J, Chen L, Zeng LQ et al (2005) Construction of low-density parity-check codes by superimposition. IEEE Trans Commun 53:243–251

    Article  Google Scholar 

  • Zhang Y, Ryan WE (2009) Toward low LDPC-code floor: a case study. IEEE Trans Commun 57:1566–1573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cancellieri .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cancellieri, G. (2015). Low Density Parity Check Codes. In: Polynomial Theory of Error Correcting Codes. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-01727-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01727-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01726-6

  • Online ISBN: 978-3-319-01727-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics