Skip to main content

Localization in Cognitive Radio Networks

  • Chapter
  • First Online:
Book cover Cognitive Radio and Networking for Heterogeneous Wireless Networks

Abstract

Cognitive Radio Networks (CRNs) are emerging as a viable solution to solve spectrum shortage problems, with the view of the evolutionary progress towards realizing the network of the future. The present work discusses a general survey of several among the critical capabilities and/or features characterizing CRNs, in the context of actual European standardization efforts. The chapter outlines an overall and harmonized technical concept for future CR systems, especially by discussing several options affecting the future evolution of radio technologies and network architectures towards more flexible and reconfigurable CR systems, as the latter are expected to increase the efficiency of the overall spectrum usage by offering new sharing opportunities and thus to provide more flexibility to applications-services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.A., Won-Yeol, L., Chowdhury, K.: Spectrum management in cognitive radio and ad-hoc networks. IEEE Netw. 23(4), 6–12 (2009a)

    Article  Google Scholar 

  2. Chochliouros, I.P., Spiliopoulou, A.S.: Cognitive systems in the scope of modern European strategic priorities. In: Virvou, M., Nakamura, T. (eds.) Knowledge-Based Software Engineering, pp. 528–539. IOS Press, Amsterdam (2008)

    Google Scholar 

  3. Mitola, J., III: Cognitive radio for flexible multimedia communications, In: IEEE International Workshop Mobile Multimedia Communications’99 (MoMuC’99), pp. 3–10. San Diego, California (1999)

    Google Scholar 

  4. Mitola, J., III, Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  5. Wyglynski, A., Nekovee, M., Hou, T.: Cognitive Radio Communication and Networks: Principle and Practice. Academic, London (2010)

    Google Scholar 

  6. International Telecommunication Union – Radiocommunication Sector (ITU-R): ITU-R Report SM.2152: Definitions of Software Defined Radio (SDR) and Cognitive Radio System (CRS), Geneva, Switzerland: ITU-R (2009)

    Google Scholar 

  7. Akyildiz, I.A., Won-Yeol, L., Chowdhury, K.: Crahns: cognitive radio ad-hoc networks. Ad Hoc Netw. 7(5), 810–836 (2009b)

    Article  Google Scholar 

  8. Le, B., Rondeau, W.T., Bostian, W.C.: Cognitive radio realities. Wirel. Commun. Mob. Comput. 7(9), 1037–1048 (2007)

    Article  Google Scholar 

  9. Thomas, R.W., DaSilva, L.A., MacKenzie, A.B.: Cognitive networks. In: First IEEE International Symposium on New frontiers in Dynamic Spectrum Access Networks 2005 (DySPAN 2005), pp. 352–360. IEEE, Baltimore, Maryland (2005)

    Google Scholar 

  10. Chochliouros, I.P., Spiliopoulou, A.S., Georgiadou, E., Belesioti, M., et al.: A model for autonomic network management in the scope of the future internet. In: Proceedings of the 48th FITCE International Congress, pp. 102–106. FITCE, Prague, Czech Republic (2009)

    Google Scholar 

  11. Mihailovic, A., Chochliouros, I.P., Kousaridas, A., Nguengang, G., et al.: Architectural principles for synergy of self-management and future internet evolutions. In: Proceedings of the ICT Mobile Summit 2009, pp. 1–8. IMC Ltd, Dublin, Santander (2009)

    Google Scholar 

  12. Raptis, T., Polychronopoulos, C., Kousaridas, A., Spapis, P., et al.: Technological enablers of cognition in self-manageable future internet elements. In: Proceedings of COGNITIVE-2009, pp. 499–504. IARIA, Athens/Glyfada (2009)

    Google Scholar 

  13. Ganesan, G., Li, Y.: Cooperative spectrum sensing in cognitive radio, part I: two user networks. IEEE Trans. Wirel. Commun. 6(6), 2204–2212 (2007)

    Article  Google Scholar 

  14. Ofcom: Digital dividend: cognitive access. Retrieved 28 June 2011, from http://stakeholders.ofcom.org.uk/consultations/cognitive/?a=0 (2009)

  15. Granelli, F., Pawelczak, P., Prasad, R.V., Subbalakshmi, K.P., Chandramouli, R., Hoffmeyer, J.A., Berger, H.S.: Standardization and research in cognitive and dynamic spectrum access networks. IEEE Commun. Mag. 48(1), 71–79 (2010)

    Article  Google Scholar 

  16. Zhao, Q., Sadler, B.M.: A survey of dynamic spectrum access. IEEE Signal Process. Mag. 24(3), 79–89 (2007)

    Article  Google Scholar 

  17. Nekovee, M.: A survey of cognitive radio access to TV white spaces. Int. J. Digit. Multimed. Broadcast. 2010, 1–12 (2010). (Hindawi Publishing Corporation)

    Google Scholar 

  18. ETSI (European Telecommunications Standards Institute): ETSI TR 102 802 V1.1.1 (2010-02): Reconfigurable Radio Systems (RRS); Cognitive Radio System Concept. ETSI, Sophia-Antipolis (2010, February)

    Google Scholar 

  19. ETSI (European Telecommunications Standards Institute):. ETSI TR 102 838 V1.1.1 (2009–10): Reconfigurable Radio Systems (RRS); Summary of Feasibility Studies and Potential Standardization Topics. ETSI, Sophia-Antipolis (2009, October)

    Google Scholar 

  20. Khalid, L., Anpalagan, A.: Emerging cognitive radio technology: principles, challenges and opportunities. Comput. Electr. Eng. 36(2), 358–366 (2010)

    Article  Google Scholar 

  21. Fortuna, C., Mohorcic, M.: Trends in the development of communication networks: cognitive networks. Comput. Netw. 53(9), 1354–1375 (2009)

    Article  Google Scholar 

  22. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009)

    Article  Google Scholar 

  23. Popescu, A., Erman, D., Fiedler, M., Popescu, A., Kouvatsos, D.: A middleware framework for communication in cognitive radio networks. In: International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT), Moscow, pp. 1162–1171. IEEE (2010)

    Google Scholar 

  24. Institute of Electrical and Electronic Engineers (IEEE): IEEE Std 1900.4-2009: IEEE standard for architectural building blocks enabling network-device distributed decision making for optimized radio resource usage in heterogeneous wireless access networks. IEEE, New York (2009)

    Google Scholar 

  25. Sayed, A.H., Tarighat, A., Khajehnouri, N.: Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. Signal Process. Mag. 22(4), 24–40 (2005). doi:10.1109/MSP.2005.1458275

    Article  Google Scholar 

  26. Niculescu, D., Nath, B.: Ad hoc positioning system (APS) using AOA. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications (INFOCOM 2003), vol. 3, pp. 1734–1743. IEEE Societies, San Francisco, CA. doi:10.1109/INFCOM.2003.1209196

    Google Scholar 

  27. Li, X., Pahlavan, K.: Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Trans. Wirel. Commun. 3, 224–234 (2004). doi:10.1109/TWC.2003.819035.

    Article  Google Scholar 

  28. Chen, L.-H., Chen, G.-H., Jin, M.-H., Wu, E.H.-K.: A novel RSS-based indoor positioning algorithm using mobility prediction. In: 39th International Conference on Parallel Processing Workshops (ICPPW), San Diego, CA, pp. 549–553 (2010). doi:10.1109/ICPPW.2010.80

    Google Scholar 

  29. Le Dortz, N., Gain, F., Zetterberg, P.: WiFi fingerprint indoor positioning system using probability distribution comparison. In: 2012 IEEE International Conference on, Acoustics, Speech and Signal Processing (ICASSP), pp. 2301–2304 (2012). doi:10.1109/ICASSP.2012.6288374

    Google Scholar 

  30. Gunawan, M., Li, B., Gallagher, T., Dempster, A.G., Retscher, G.: A new method to generate and maintain a WiFi fingerprinting database automatically by using RFID. In: 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–6. Sydney, NSW (2012). doi:10.1109/IPIN.2012.6418881

    Google Scholar 

  31. Brown, D.R., Dunn, D.B.: Classification schemes of positioning technologies for indoor navigation. In: 2011 Proceedings of IEEE Southeastcon, Nashville, TN, pp. 125–130 (2011). doi:10.1109/SECON.2011.5752919

    Google Scholar 

  32. WHERE2 Project. http://www.ict-where2.eu

  33. Steinböck, G., Pedersen, T., Fleury, B.H., Wang, W., Raulefs, R.: Distance dependent model for the delay power spectrum of in-room reverberant channels. IEEE Trans. Antennas Propag. 61(8), pp. 4327–4340 (2013)

    Article  Google Scholar 

  34. WHERE2 Partners: Final: location information extraction (FP7-ICT-2009-4 WHERE2 Deliverable D2.5). http://www.ict-where2.eu/documents/Deliverables/Deliverable-D2.5.pdf (2013)

  35. WHERE2 Partners: Final: self-learning positioning using inferred context information (FP7-ICT-2009-4 WHERE2 Deliverable D2.6). http://www.ict-where2.eu/documents/Deliverables/Deliverable-D2.6.pdf (2013)

  36. WHERE2 Partners: Final: synergetic cooperative location and communications for dynamic heterogeneous networks (FP7-ICT-2009-4 WHERE2 Deliverable D2.4). http://www.ict-where2.eu/documents/Deliverables/Deliverable-D2.4.pdf (2013)

  37. Mensing, C., Sand, S., Dammann, A.: Hybrid data fusion and tracking for positioning with GNSS and 3GPP-LTE. Int. J. Navig. Obs. (2010). doi:10.1155/2010/812945

    Google Scholar 

  38. Denis, B., Raulefs, R., Fleury, B.H., Uguen, B., Amiot, N., de Celis, L., Dominguez, J., Koldsgaard, M.B., Laaraiedh, M., Noureddine, H., Staudinger, E., Steinboeck, G.: Cooperative and heterogeneous indoor localization experiments. In: Proceedings of the IEEE International Conference on Communications (IEEE ICC’13), Budapest (2013)

    Google Scholar 

  39. Raulefs, R., Zhang, S., Mensing, C.: Bound-based spectrum allocation for cooperative positioning. Trans. Emerg. Telecommun. Technol. 24(1), 69–83 (2013) Wiley. doi:10.1002/ett.2572

    Google Scholar 

  40. Zhang, S., Raulefs, R., Dammann, A., Sand, S.: System-level performance analysis for Bayesian cooperative positioning: from global to local. In: Proceedings of the Fourth IPIN International Conference – Indoor Positioning and Indoor Navigation (IPIN 2013), Montbéliard-Belfort (2013)

    Google Scholar 

  41. Zhang, S., Raulefs, R.: Improved particle filtering by exploring nomadic movements. In: 5th International Symposium on Communications, Control, and Signal Processing (ISCCSP 2012), Rome (2012)

    Google Scholar 

  42. OFCOM: TV white spaces: approach to coexsistence. http://stakeholders.ofcom.org.uk/binaries/consultations/white-space-coexistence/summary/white-spaces.pdf (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis P. Chochliouros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chochliouros, I.P. et al. (2015). Localization in Cognitive Radio Networks. In: Di Benedetto, MG., Cattoni, A., Fiorina, J., Bader, F., De Nardis, L. (eds) Cognitive Radio and Networking for Heterogeneous Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-01718-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01718-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01717-4

  • Online ISBN: 978-3-319-01718-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics