Skip to main content

The Influence of Time Delay on Crane Operator Performance

  • Chapter
Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 1))

Abstract

Cranes are used extensively in many industries throughout the world. These cranes operate in a wide array of environments, including some that are hazardous to humans. The vast majority of cranes are directly controlled by human operators. However, in some cases, it is necessary to remove the human operator from hazardous operating conditions, creating a crane that must be remotely operated. This, however, introduces additional challenges for the operator. The operator must now control the oscillatory payload while suffering from decreased perception of the environment and the potential time delays caused by remote operation. A number of studies of crane operator performance with varying time delays are presented here. The compiled results show that the type of crane control and duration of the communication delay directly influence task completion time and difficulty. Input shaping control is shown to improve completion times over a large range of operating conditions and communication time delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, N., Lee, J.H., Hashimoto, H.: Study on influence of time delay in teleoperation. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 317–322 (1999)

    Google Scholar 

  2. Blackburn, D.F., Singhose, W., Kitchen, J.P., Petrangenaru, V.P., Lawrence, J., Kamoi, T., Taura, A.: Advanced input shaping algorithm for nonlinear tower crane dynamics. In: 8th International Conference on Motion and Vibration Control, Daejeon, Korea (2006)

    Google Scholar 

  3. Ferrell, W.: Remote manipulation with transmission delay. IEEE Transactions on Human Factors in Electronics HFE-6(1), 24–32 (1965)

    Article  Google Scholar 

  4. Fiorini, P., Oboe, R.: Internet-based telerobotics: Problems and approaches. In: Proceedings of the International Conference on Advanced Robotics, Monterey, CA, USA, pp. 765–770 (1997)

    Google Scholar 

  5. Freese, M., Fukushima, E.F., Hirose, S., Singhose, W.: Endpoint vibration control of a mobile endpoint vibration control of a mobile mine-detecting robotic manipulator. In: Proceedings of 2007 American Control Conference, New York, NY, United states, pp. 7–12 (2007)

    Google Scholar 

  6. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huey, J., Fortier, J., Wolff, S., Singhose, W., Haraldsson, H.B., Sasaki, S.K., Watari, E.: Remote manipulation of cranes via the internet. In: Proceedings of International Conference on Motion and Vibration Control, Daejeon, Korea (2006)

    Google Scholar 

  8. Jones, S., Ulsoy, A.G.: An approach to control input shaping with application to coordinate measuring machines. J. of Dynamics, Measurement, and Control 121, 242–247 (1999)

    Article  Google Scholar 

  9. Khalid, A., Huey, J., Singhose, W., Lawrence, J., Frakes, D.: Human operator performance testing using an input-shaped bridge crane. Journal of Dynamic Systems, Measurement and Control 128(4), 835–841 (2006)

    Article  Google Scholar 

  10. Kim, D., Singhose, W.: Performance studies of human operators driving double-pendulum bridge cranes. Control Engineering Practice 18(6), 567–576 (2010)

    Article  Google Scholar 

  11. Kim, J.: A TCP/IP-based remote control system for yard cranes in a port container terminal. Robotica 24, 613–620 (2006)

    Article  Google Scholar 

  12. Lawrence, J., Singhose, W., Weiss, R., Erb, A., Glauser, U.: An internet-driven tower crane for dynamics and controls education. In: 7th IFAC Symposium on Advances in Control Education, Madrid, Spain (2006)

    Google Scholar 

  13. Lim, J., Ko, J., Lee, J.: Internet-based teleoperation of a mobile robot with force-reflection. In: Proceedings of 2003 IEEE Conference on Control Applications, Istanbul, Turkey, vol. 1, pp. 680–685 (2003)

    Google Scholar 

  14. Magee, D.P., Book, W.J.: Filtering micro-manipulator wrist commands to prevent flexible base motion. In: Proceedings of the American Controls Conference, Seattle, WA, vol. 2, pp. 474–479 (1995)

    Google Scholar 

  15. Munir, S., Book, W.J.: Control techniques and programming issues for time delayed internet based teleoperation. Journal of Dynamic Systems, Measurement and Control 125(2), 205–214 (2003)

    Article  Google Scholar 

  16. Niemeyer, G., Slotine, J.J.E.: Telemanipulation with time delays. International Journal of Robotics Research 23(9), 873–890 (2004)

    Article  Google Scholar 

  17. Oboe, R., Fiorini, P.: Design and control environment for internet-based telerobotics. International Journal of Robotics Research 17(4), 433–449 (1998)

    Article  Google Scholar 

  18. Parker, G., Groom, K., Hurtado, J., Feddema, J., Robinett, R., Leban, F.: Experimental verification of a command shaping boom crane control system. In: American Control Conference, San Diego, CA, USA, vol. 1, pp. 86–90 (1999)

    Google Scholar 

  19. Parker, G.G., Groom, K., Hurtado, J., Robinett, R.D., Leban, F.: Command shaping boom crane control system with nonlinear inputs. In: Proceedings of IEEE Conference on Control Applications, Kohala Coast, HI, USA, vol. 2, pp. 1774–1778 (1999)

    Google Scholar 

  20. Rosch, O., Schilling, K., Roth, H.: Haptic interfaces for the remote control of mobile robots. Control Engineering Practice 10(11), 1309–1313 (2002)

    Article  Google Scholar 

  21. Schilling, K., Roth, H.: Control interfaces for teleoperated mobile robots. In: Proceedings of 7th IEEE International Conference on Emerging Technologies and Factory Automation, Barcelona, Spain, vol. 2, pp. 1399–1403 (1999)

    Google Scholar 

  22. Schilling, K., Roth, H., Spilca, C.: A tele-experiment on rover motor control via internet. J. Robot. Syst. 22(3), 123–130 (2005)

    Article  Google Scholar 

  23. Sheridan, T.: Telerobotics. Automatica 25(4), 487–507 (1989)

    Article  Google Scholar 

  24. Sheridan, T.: Teleoperation, telerobotics and telepresence: a progress report. Control Engineering Practice 3(2), 205–214 (1995)

    Article  Google Scholar 

  25. Sheridan, T.B.: Space teleoperation through time delay: Review and prognosis. IEEE Transactions on Robotics and Automation 9(5), 592–606 (1993)

    Article  Google Scholar 

  26. Singer, N.C., Seering, W.P.: Preshaping command inputs to reduce system vibration. Journal of Dynamic Systems, Measurement, and Control 112, 76–82 (1990)

    Article  Google Scholar 

  27. Singhose, W., Seering, W., Singer, N.: Residual vibration reduction using vector diagrams to generate shaped inputs. ASME J. of Mechanical Design 116, 654–659 (1994)

    Article  Google Scholar 

  28. Singhose, W., Singer, N., Seering, W.: Improving repeatability of coordinate measuring machines with shaped command signals. Precision Engineering 18, 138–146 (1996)

    Article  Google Scholar 

  29. Slawinski, E., Postigo, J.F., Mut, V.: Bilateral teleoperation through the internet. Robotics and Autonomous Systems 55(3), 205–215 (2007)

    Article  Google Scholar 

  30. Smith, O.J.M.: Posicast control of damped oscillatory systems. Proceedings of the IRE 45, 1249–1255 (1957)

    Article  Google Scholar 

  31. Sorensen, K., Singhose, W., Dickerson, S.: A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Engineering Practice 15(7), 825–837 (2007)

    Article  Google Scholar 

  32. Starr, G.P.: Swing-free transport of suspended objects with a path-controlled robot manipulator. Journal of Dynamic Systems, Measurement and Control 107, 97–100 (1985)

    Article  Google Scholar 

  33. Vaughan, J., Kim, D., Singhose, W.: Control of tower cranes with double-pendulum payload dynamics. IEEE Transactions on Control Systems Technology 18(6), 1345–1358 (2010)

    Google Scholar 

  34. Vaughan, J., Peng, K.C.C., Singhose, W., Seering, W.: Influence of remote-operation time delay on crane operator performance. In: Proc. of 10th IFAC Workshop on Time Delay Systems. IFAC Papers Online, Boston, USA, vol. 10, Part I, pp. 85–90 (2012)

    Google Scholar 

  35. Vaughan, J., Smith, A., Kang, S.J., Singhose, W.: Predictive graphical user interface elements to improve crane operator performance. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41(2), 323–330 (2011)

    Article  Google Scholar 

  36. Wang, M., Liu, J.N.: Interactive control for internet-based mobile robot teleoperation. Robotics and Autonomous Systems 52(2-3), 160–179 (2005)

    Article  Google Scholar 

  37. Xue, X., Yang, S.X., Meng, M.Q.H.: Remote sensing and teleoperation of a mobile robot via the internet. In: Proceedings of 2005 International Conference on Information Acquisition, Hong Kong, China, pp. 537–542 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Vaughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaughan, J., Singhose, W. (2014). The Influence of Time Delay on Crane Operator Performance. In: Vyhlídal, T., Lafay, JF., Sipahi, R. (eds) Delay Systems. Advances in Delays and Dynamics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-01695-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01695-5_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01694-8

  • Online ISBN: 978-3-319-01695-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics