Skip to main content

Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 512))

Abstract

Two new methods for incorporating old and recent information into a surrogate model in order to improve the tracking of the global optima of expensive black boxes are presented in this paper. The response surfaces are built using Gaussian processes fitted to data which is obtained through sequential sampling. The efficient global optimization (EGO) algorithm applied to the generated response surface is used to determine the next most promising sample (where the expected improvement is maximized). The goal is to find the global maxima of an expensive to evaluate objective function which changes after a given number of function evaluations with as few samples as possible. Exploiting old information in a discounted manner significantly improves the search, which is shown through numerical experiments performed using the moving peaks benchmark (MPB).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biermann, D., Weinert, K., Wagner, T.: Model-based optimization revisited: Towards real-world processes. In: IEEE Congress on Evolutionary Computation 2008, pp. 2975–2982. IEEE (2008)

    Google Scholar 

  2. Blackwell, T.M., Branke, J.: Multi-swarms, exclusion and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2004), http://eprints.gold.ac.uk/993/

    Article  Google Scholar 

  3. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE Press (1999)

    Google Scholar 

  4. Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization problems. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 239–262. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Burl, M.C., Wang, E.: Active learning for directed exploration of complex systems. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 89–96. ACM, New York (2009), doi:10.1145/1553374.1553386

    Google Scholar 

  6. Floudas, C., Gounaris, C.: A review of recent advances in global optimization. Journal of Global Optimization 45, 3–38 (2009), doi:10.1007/s10898-008-9332-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, X., Eberhart, R.: Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1666–1670. IEEE (2002), doi:10.1109/CEC.2002.1004492

    Google Scholar 

  8. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005), doi:10.1109/TEVC.2005.846356

    Article  Google Scholar 

  9. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization 21, 345–383 (2001), doi:10.1023/A:1012771025575

    Article  MATH  Google Scholar 

  10. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13(4), 455–492 (1998), http://dx.doi.org/10.1023/A:1008306431147 , doi:10.1023/A:1008306431147

    Article  MathSciNet  MATH  Google Scholar 

  11. Morales-Enciso, S., Branke, J.: Revenue maximization through dynamic pricing under unknown market behaviour. In: Ravizza, S., Holborn, P. (eds.) 3rd Student Conference on Operational Research, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. OpenAccess Series in Informatics (OASIcs), vol. 22, pp. 11–20 (2012), http://drops.dagstuhl.de/opus/volltexte/2012/3542 , doi: http://dx.doi.org/10.4230/OASIcs.SCOR.2012.11

  12. Moser, I.: All currently known publications on approaches which solve the moving peaks problem (2007)

    Google Scholar 

  13. Parsopoulos, K., Vrahatis, M.: Unified particle swarm optimization in dynamic environments. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 590–599. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. In: Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Richter, H.: Detecting change in dynamic fitness landscapes. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1613–1620. IEEE (2009), doi:10.1109/CEC.2009.4983135

    Google Scholar 

  16. Shan, S., Wang, G.: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization 41, 219–241 (2010), http://dx.doi.org/10.1007/s00158-009-0420-2 , 10.1007, doi:10.1007/s00158-009-0420-2

    Article  MathSciNet  Google Scholar 

  17. Simoes, A., Costa, E.: Improving memory’s usage in evolutionary algorithms for changing environments. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 276–283. IEEE (2007), doi:10.1109/CEC.2007.4424482

    Google Scholar 

  18. Tang, Y., Chen, J., Wei, J.: A surrogate-based particle swarm optimization algorithm for solving optimization problems with expensive black box functions. Engineering Optimization, 1–20 (2012), doi:10.1080/0305215X.2012.690759

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Morales-Enciso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morales-Enciso, S., Branke, J. (2014). Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-01692-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01692-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01691-7

  • Online ISBN: 978-3-319-01692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics