Skip to main content

Poly-NIPAM Microgels with Different Cross-Linker Densities

Scaling Behavior of the Network Fluctuations in the Vicinity of the Volume Phase Transition

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

Thermoresponsive microgel particles made of the monomer N-isopropylacrylamide (NIPAM) and the cross-linker molecule N,N’-methylenebisacrylamide (BIS) were synthesized using three different cross-linker molar ratios. The volume phase transition behavior of these colloids was investigated by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS) covering the different length scales of interest. Both methods provide the temperature of the volume phase transition in good agreement. The volume change as followed by DLS is described using the Flory-Rehner theory, leading to the determination of the spinodal temperature. Furthermore, the network correlation length ξ, which is available from appropriate fits of the measured SANS profiles, was used to study the critical behavior in terms of scaling laws. The results from DLS and SANS show a strong cross-linker density dependence.

The online version of this chapter (doi: 10.1007/978-3-319-01683-2_6) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Article  CAS  Google Scholar 

  2. Wu C, Zhou S (1997) Volume phase transition of swollen gels: discontinuous or continuous. Macromolecules 30:574–576

    Article  CAS  Google Scholar 

  3. Saunders BR, Vincent B (1999) Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci 80:1–25

    Article  CAS  Google Scholar 

  4. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. In: Dusek (ed) Responsive gels: volume transitions I. Volume 109 of advances in polymer science, 1 edn. Springer, Berlin, pp 1–62

    Google Scholar 

  5. Andersson M, Maunu SL (2006) Volume phase transition and structure of poly(N-isopropylacrylamide) microgels studied with1H-NMR spectroscopy in d2o. Colloid Polym Sci 285:293–303

    Article  CAS  Google Scholar 

  6. Dingenouts N, Nordhausen Ch, Ballauff M (1998) The volume transition in thermosensitive micronetworks as observed by small-angle x-ray scattering. Ber Bunsenges Phys Chem 102(11):1594–1596

    Article  CAS  Google Scholar 

  7. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708. Review

    Google Scholar 

  8. Hoare T, Pelton R (2007) Functionalized microgel swelling: comparing theory and experiment. J Phys Chem B 111:11895–11906

    Article  CAS  Google Scholar 

  9. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142

    Article  CAS  Google Scholar 

  10. Wu C, Zhou S (1997) Light scattering study of spherical poly(N-isopropylacrylamide) microgels. J Macromol Sci B36(3):345–355

    Article  CAS  Google Scholar 

  11. Kim J-H, Ballauff M (1999) The volume transition in thermosensitive core-shell latex particles containing charged groups. Colloid Polym Sci 277:1210–1214

    Article  CAS  Google Scholar 

  12. Varga I, Gilanyi T, Meszaros R, Filipcsei G, Zrinyi M (2001) Effect of cross-link density on the internal structure of poly(N-isopropylacrylamide) microgels. J Phys Chem B 105:9071–9076

    Article  CAS  Google Scholar 

  13. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550

    Article  CAS  Google Scholar 

  14. Kratz K, Lapp A, Eimer W, Hellweg T (2002) Volume phase transition and structure of TREGDMA, EGDMA, and BIS cross-linked PNIPA microgels: a small angle neutron and dynamic light scattering study. Colloids Surf A 197(1–3):55–67

    Article  CAS  Google Scholar 

  15. Hellweg Th (2003) Properties of NIPAM-based intelligent microgel particles: investigated using scattering methods. In: Liz-Marzán LM, Kamat PV (eds) Nanoscale materials, 1st edn. Kluwer, Dordrecht, pp 209–225

    Google Scholar 

  16. Kratz K, Hellweg Th, Eimer W (2001) Structural changes in pnipam microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42(15):6531–6539

    Article  Google Scholar 

  17. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92(24):5013–5016

    Article  CAS  Google Scholar 

  18. Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306

    Article  CAS  Google Scholar 

  19. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20:247–256

    Article  CAS  Google Scholar 

  20. Schmidt S, Motschmann H, Hellweg T, von Klitzing R (2008) Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels. A combined AFM and ellipsometry study. Polymer 49:749–756

    CAS  Google Scholar 

  21. Schmidt S, Hellweg T, von Klitzing R (2008) Packing density control in P(NIPAM-co-AAc) microgel monolayers: effect of surface charge, pH, and preparation technique. Langmuir 24:12595–12602

    Article  CAS  Google Scholar 

  22. Nerapusri V, Keddie JL, Vincent B, Bushnak IA (2006) Swelling and deswelling of adsorbed microgel monolayers triggered by changes in temperature, pH, and electrolyte concentartion. Langmuir 22:5036–5041

    Article  CAS  Google Scholar 

  23. Crassous JJ, Ballauff M, Drechsler M, Schmidt J, Talmon Y (2006) Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy. Langmuir 22(6):2403–2406

    Article  CAS  Google Scholar 

  24. Wiedemair J, Serpe MJ, Kim J, Masson JF, Lyon LA, Mizaikoff B, Kranz C (2007) In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles. Langmuir 23:130–137

    Article  CAS  Google Scholar 

  25. Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of smart microgels in bulk solution and adsrobed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254

    Article  Google Scholar 

  26. FitzGerald PA, Dupin D, Armes SP, Wanless EJ (2007) In situ observations of adsorbed microgel particles. Soft Matter 3:580–586. No copy

    Google Scholar 

  27. Tagit O, Tomczak N, Vancso GJ (2008) Probing the morphology and nanoscale mechanics of single poly(N-isopropylacrylamide) microgels across the lower-critical-solution temperature by atomic force microscopy. Small 4:119–126

    Article  CAS  Google Scholar 

  28. Burmistrova A, von Klitzing R (2010) Control of number density and swelling/shrinking behavior of P(NIPAM–AAc) particles at solid surfaces. Mater Chem 20:3502–3507

    Article  CAS  Google Scholar 

  29. Burmistrova A, Richter M, Eisele M, Üzüm C, von Klitzing R (2011) The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles. Polymers 3:1575–1590

    Article  CAS  Google Scholar 

  30. Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropylacrylamide) gels near their volume-phase transition. J Chem Phys 97(9):6829–6841

    Article  CAS  Google Scholar 

  31. Shibayama M, Tanaka T, Han CC (1992) Small-angle neutron scattering study on weakly charged temperature sensitive polymer gels. J Chem Phys 97(9):6842–6854

    Article  CAS  Google Scholar 

  32. Mears SJ, Deng Y, Cosgrove T, Pelton R (1997) Structure of sodium dodecyl sulfate bound to a poly(NIPAM) microgel particle. Langmuir 13:1901

    Article  CAS  Google Scholar 

  33. Crowther HM, Saunders BR, Mears SJ, Cosgrove T, Vincent B, King SM, Yu G-E (1999) Poly(NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study. Colloids Surfaces A Physicochem Eng Asp 152: 327–333

    Article  CAS  Google Scholar 

  34. Berndt I, Richtering W (2003) Doubly temperature sensitive core-shell microgels. Macromolecules 36:8780–8785

    Article  CAS  Google Scholar 

  35. Berndt I, Pedersen JS, Lindner P, Richtering W (2006) Inlfuence of the shell thickness and cross-link density on the structure of temperature-semsitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core-shell microgels investigated by small-angle neutron scattering. Langmuir 22:459–468

    Article  CAS  Google Scholar 

  36. Dingenouts N, Seelenmeyer S, Deike I, Rosenfeldt S, Ballauff M, Lindner P, Narayanan T (2001) Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation. Phys Chem Chem Phys 3:1169–1174

    Article  CAS  Google Scholar 

  37. Stieger M, Richtering W, Pedersen JS, Lindner P (2004) Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloid. J Chem Phys 120(13):6197–6206

    Article  CAS  Google Scholar 

  38. Meier-Koll A, Pipich V, Busch P, Papadakis CM, Müller-Buschbaum P (2012) Phase separation in semidilute aqueous poly(N-isopropylacrylamide) solutions. Langmuir 8:8791–8798

    Article  Google Scholar 

  39. Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E (2002) Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys Rev E 66(5):051803/1–10

    Google Scholar 

  40. Dusek K (1993) Responsive gels: volume transitions I. Volume 109 of advances in polymer science, 1 edn. Springer, Berlin

    Google Scholar 

  41. Dusek K (1993) Responsive gels: volume transitions II. Volume 110 of advances in polymer science, 1 edn. Springer, Berlin

    Google Scholar 

  42. Bagnuls C, Bervillier C (1985) Nonasymptotic critical-behavior from field theory at d  = 3 the disordered-phase case. Phys Rev B 32(11):7209–7231

    Article  Google Scholar 

  43. Bagnuls C, Bervillier C (1985) A new theoretical constraint on the static critical-behavior of the specific heat. Phys Lett A 107(7):299–304

    Article  Google Scholar 

  44. Bagnuls C, Bervillier C (1987) Nonuniversal power laws and crossover from critical to classical behavior. Phys Rev Lett 58(5):435–438

    Article  CAS  Google Scholar 

  45. Li Y, Tanaka T (1989) Study of the universality class of the gel network system. J Chem Phys 90(9):5161–5166

    Article  CAS  Google Scholar 

  46. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks. i. Rubberlike elasticity. J Chem Phys 11(11):512–520

    Article  CAS  Google Scholar 

  47. Flory PJ (1953) Principles or polymer chemistry. Cornell University Press, Ithaca/London

    Google Scholar 

  48. Eichinger BE, Flory PJ (1968) Thermodynamics of polymer solutions. J Chem Soc Faraday Trans 64:2035–2052

    Article  CAS  Google Scholar 

  49. Hirotsu S, Hirokawa Y, Tanaka T (1987) Volume-phase transitions of ionized N-iospropylacrylamide gels. J Chem Phys 87(2):1392–1395

    Article  CAS  Google Scholar 

  50. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks. ii. Swelling. J Chem Phys 11(11):521–526

    Article  CAS  Google Scholar 

  51. Flory PJ, Erman B (1982) Theory of elasticity of polymer networks. 3. Macromolecules 15(3):800–806

    Article  CAS  Google Scholar 

  52. Crassous JJ, Wittemann A, Siebenbürger M, Schrinner M, Drechsler M, Ballauff M (2008) Direct imaging of temperature-sensitive core-shell latexes by cryogenic transmission electron microscopy. Colloid Polym Sci 286:805–812

    Article  CAS  Google Scholar 

  53. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca/London

    Google Scholar 

  54. Wong P (1985) Scattering by inhomogeneous systems with rough internal surfaces: porous solids and random-field Ising systems. Phys Rev B 32(11):7417–7424

    Article  CAS  Google Scholar 

  55. Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzán LM, Hellweg T (2008) Poly(N-isopropylacrylamide) microgels with silica nanoparticle core: the volume phase transition/collapse of the polymer shell as seen by small angle neutron scattering and dynamic light scattering. Phys Chem Chem Phys 10:6708–6716

    Article  CAS  Google Scholar 

  56. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–217

    Article  Google Scholar 

  57. Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  58. Keiderling U, Wiedenmann A (1995) New SANS instrument at the BER II reactor in Berlin, Germany. Physica B 213 and 214:895–897

    Google Scholar 

  59. Keller T, Krist T, Danzig A, Keiderling U, Mezei F, Wiedenmann A (2000) The polarized neutron small-angle scattering instrument at BENSC Berlin. Nucl Instrum Methods Phys Res Sect A 451:474–479

    Article  CAS  Google Scholar 

  60. Keiderling U (1997) A new software package for SANS data processing at the Hahn-Meitner-Institut in Berlin, Germany. Physica B 234:1111–1113

    Article  Google Scholar 

  61. Keiderling U (2002) The new BerSANS-PC software for reduction and treatment of small angle neutron scattering data. Appl Phys A-Mater Sci Process 74:1455–1457

    Article  Google Scholar 

  62. Kohlbrecher J (2008) SASfit: a program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, CH-5232, Villigen

    Google Scholar 

  63. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A2 2:1441–1455

    Article  Google Scholar 

  64. Burmistrova A, Richter M, Uzum C, von Klitzing R (2011) Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the youngs modulus. Colloid Polym Sci 289:613–624

    Article  CAS  Google Scholar 

  65. Kratz K, Hellweg Th, Eimer W (1998) Effect of connectivity and charge density on the swelling and local structural properties of colloidal PNIPA microgels. Ber Bunsenges Phys Chem 102:1603–1608

    Article  CAS  Google Scholar 

  66. Gao J, Frisken BJ (2003) Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir 19:5212–5216

    Article  CAS  Google Scholar 

  67. Saunders BR (2004) On the structure of poly(N-isopropylacry- lamide) microgel particles. Langmuir 20:3925–3932

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft within the framework of the priority program SPP 1259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Karg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Karg, M., Prévost, S., Brandt, A., Wallacher, D., von Klitzing, R., Hellweg, T. (2013). Poly-NIPAM Microgels with Different Cross-Linker Densities. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_6

Download citation

Publish with us

Policies and ethics