Skip to main content

Swelling Behaviour of Functionalized Hydrogels for Application in Chemical Sensors

  • Conference paper
  • First Online:
Intelligent Hydrogels

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

Thin films of metabolite-specific biocompatible hydrogels were combined with microfabricated piezoresistive pressure transducers to obtain chemomechanical sensors that can serve as selective biochemical sensors for a continuous monitoring of metabolites. The gel swelling pressure has been monitored in simulated physiological solutions by means of the output signal of piezoresistive sensors. Gel response time and accuracy with which hydrogels can track gradual changes in glucose, fructose, pH and CO2, respectively, were estimated. A significant reduction of the sensor response time has been achieved due to hygroscopic fibres incorporated in the hydrogel layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin G, Chang S, Hao H, Tathireddy P, Orthner M, Magda J, Solzbacher F (2010) Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors. Sens Actuators B-Chem 144:332–336

    Article  CAS  Google Scholar 

  2. Orthner MP, Lin G, Avula M, Buetefisch S, Magda J, Rieth LW, Solzbacher F (2010) Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in-vitro). Sens Actuators B-Chem 145(2):807–816. doi:10.1016/j.snb.2010.01.063

    Article  CAS  Google Scholar 

  3. Guenther M, Gerlach G (2009) Hydrogels for chemical sensors. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators, Springer series on chemical sensors and biosensors, vol 6. Springer, Berlin, pp 165–195

    Google Scholar 

  4. Guenther M, Gerlach G, Wallmersperger T, Solzbacher F, Magda JJ, Lin G, Tathireddy T, Orthner MP (2011) Biochemical microsensors on the basis of metabolically sensitive hydrogels. Proceedings of SPIE, 7976:D1–D9. doi: 10.1117/12.880460

  5. Herber S, Bomer J, Olthuis W, Bergveld P, van den Berg A (2005) Miniaturized carbon dioxide gas sensor based on sensing of pH-sensitive hydrogel swelling with a pressure sensor. Biomed Microdevices 7(3):197–204

    Article  CAS  Google Scholar 

  6. Hilt JZ, Gupta AK, Bashir R, Peppas NA (2003) Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed Microdevices 5(3):177–184

    Article  CAS  Google Scholar 

  7. Siegel RA, Gu Y, Lei M, Baldi A, Nuxoll E, Ziaie B (2010) Hard and soft micro- and nanofabrication: an integrated approach to hydrogel-based biosensing and drug delivery. J Control Release 141:303–313

    Article  CAS  Google Scholar 

  8. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37(12):1678–1719

    Article  CAS  Google Scholar 

  9. Muscatello MMW, Stunja LE, Asher SA (2009) Polymerized crystalline colloidal array sensing of high glucose concentrations. Anal Chem 81:4978–4986

    Article  Google Scholar 

  10. Guenther M, Gerlach G, Wallmersperger T, Avula MN, Cho SH, Xie X, Devener BV, Solzbacher F, Tathireddy P, Magda JJ, Scholz C, Obeid R, Armstrong T (2013) Smart hydrogel-based biochemical microsensor array for medical diagnostics. Adv Sci Technol 85:47–52. doi:10.4028/www.scientific.net/AST.85.47

    Article  CAS  Google Scholar 

  11. Koschwanez HE, Reichert WM (2007) In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials 28:3687–3703

    Article  CAS  Google Scholar 

  12. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  13. Koudelka M, Rohner-Jeanrenaud F, Terrettaz J, Bobbioni-Harsch E, de Rooij NF, Jeanrenaud B (1991) In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosens Bioelectron 6:3l–36

    Article  Google Scholar 

  14. Jung DY, Magda JJ, Han IS (2000) Catalase effects on glucose-sensitive hydrogels. Macromolecules 33:3332–3336

    Article  CAS  Google Scholar 

  15. Matsumoto A, Kurata T, Shiino D, Kataoka K (2004) Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety. Macromolecules 37:1502–1510

    Article  CAS  Google Scholar 

  16. Guenther M, Gerlach G, Wallmersperger T, Solzbacher F, Tathireddy P, Magda JJ, Lin G, Orthner MP (2011) Hydrogel-Based biochemical sensors. Proceedings of 15th international conference on sensors and measurement technology “Sensor + Test 2011”, Nuremberg, pp 211–215 (on CD-ROM, ISBN 978-3-9810993-9-3)

    Google Scholar 

  17. Wallmersperger T (2009) Modelling and simulation of the chemo-electro-mechanical behaviour. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators, Springer series on chemical sensors and biosensors, vol 6. Springer, Berlin, pp 137–163

    Google Scholar 

  18. Wallmersperger T, Ballhause D, Kröplin B, Günther M, Gerlach G (2009) Coupled multi-field formulation in space and time for the simulation of intelligent hydrogels. J Intel Mat Syst Str 20(12):1483–1492

    Article  CAS  Google Scholar 

  19. Wallmersperger T, Keller K, Kröplin B, Guenther M, Gerlach G (2011) Chemo-electro-mechanical modeling of pH-sensitive hydrogels. Proc SPIE 7976:101–109

    Google Scholar 

  20. Wallmersperger T, Keller K, Kröplin B, Guenther M, Gerlach G (2011) Modeling and simulation of pH-sensitive hydrogels. Coll Pol Sci 289:535–544

    Article  CAS  Google Scholar 

  21. Keller K, Wallmersperger T, Kröplin B, Guenther M, Gerlach G (2011) Modelling of temperature-sensitive polyelectrolyte gels by the use of the coupled chemo-electro-mechanical formulation. Mech Adv Mater Struct 18:511–523

    Article  CAS  Google Scholar 

  22. Horkay F, Cho SH, Tathireddy P, Rieth L, Solzbacher F, Magda J (2011) Thermodynamic analysis of the selectivity enhancement obtained by using smart hydrogels that are zwitterionic when detecting glucose with boronic acid moieties. Sens Actuators B-Chem 160:1363–1371. doi:10.1016/j.snb.2011.09.079

    Article  CAS  Google Scholar 

  23. Hisamitsu I, Kataoka K, Okano T, Sakurai Y (1997) Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res 14:289–293

    Article  CAS  Google Scholar 

  24. Dey PC, Motin MA, Biswas TK, Huque EM (2003) Apparent molar volume and viscosity studies on some carbohydrates in solutions. Chem Mon 134:797–809. doi:10.1007/s00706-002-0530-7

    Article  CAS  Google Scholar 

  25. Schulz V, Gerlach G, Günther M, Magda JJ, Solzbacher F (2010) Piezoresistive pH microsensors based on stimuli-sensitive polyelectrolyte hydrogels. Tech Mess 77(3):179–186. doi:10.1524/teme.2010.0045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. N. Avula, F. Solzbacher, P. Tathireddy, S. H. Cho, and J. J. Magda are acknowledged for the help with the parylene C coating as well as for the preparation of pre-gel solutions. The authors gratefully acknowledge support of this work from the Deutsche Forschungsgemeinschaft (SPP 1259, grant Ge 779/14-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Guenther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Guenther, M., Wallmersperger, T., Keller, K., Gerlach, G. (2013). Swelling Behaviour of Functionalized Hydrogels for Application in Chemical Sensors. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_20

Download citation

Publish with us

Policies and ethics