Skip to main content

Seawater Desalination via Hydrogels: Practical Realisation and First Coarse Grained Simulations

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

We investigated and described a novel approach for water desalination using charged hydrogels under externally applied mechanical forces. The desalination mechanism is based on the unequal distribution of an added salt between gel and surrounding solution phase. We synthesised acrylic acid-based hydrogels of various compositions and investigated their desalination properties with a specifically designed experimental press setup that allowed us to control online the force respective pressure exerted on the gel and to measure the water elution from the gel bed as well as the salt concentration of the eluate. A reference sodium chloride solution was used as a model for desalination applications. The experiments were augmented with a theoretical analysis within a mean-field Donnan model that can semi-quantitatively explain the salt distribution and the desalination process. In addition we performed coarse-grained simulations with explicit ions and charged bead-spring polymers. The simulations provided reference data on well defined systems which could be directly compared with the theoretical predictions. This comparison provided valuable insights into the weak points of the mean-field theory and guidelines for its further development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology, 1st edn. Wiley-VCH, New York

    Google Scholar 

  2. Kazanskii KS, Dubrovskii SA (1992) Adv Polym Sci 104:97

    Article  CAS  Google Scholar 

  3. Hogari K, Ashiya F (1994) In: Buchholz FL, Peppas NA (eds) Superabsorbent polymers science and technology. ACS symposium series, vol 573, 1st edn. American Chemical Society, Washington, DC, pp 128–140

    Google Scholar 

  4. Masuda F (1994) In: Buchholz FL, Peppas NA (eds) Superabsorbent polymers science and technology. ACS symposium series, vol 573, 1st edn. American Chemical Society, Washington, DC, pp 88–98

    Google Scholar 

  5. Wiertz P (2011) Sustainability report, 3rd edn. EDANA, Brussels

    Google Scholar 

  6. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  7. Katchalsky A, Michaeli I (1955) J Polym Sci 15:69

    Article  CAS  Google Scholar 

  8. Höpfner J, Klein C, Wilhelm M (2010) Macromol Rapid Commun 31:1337

    Article  Google Scholar 

  9. Cath TY, Childress AE, Elimelech M (2006) J Membr Sci 281:70

    Article  CAS  Google Scholar 

  10. Kravath RE, Davis JA (1975) Desalination 16:151

    Article  CAS  Google Scholar 

  11. Fritzmann C, Löwenberg J, Wintgensand T, Melin T (2007) Desalination 216:1

    Article  CAS  Google Scholar 

  12. Khawaji AD, Kutubkhanah IK, Wie JM (2008) Desalination 221:47

    Article  CAS  Google Scholar 

  13. McCutcheon JR, McGinnis RL, Elimelech M (2005) Desalination 174:1

    Article  CAS  Google Scholar 

  14. McGinnis RL, Elimelech M (2007) Desalination 207:370

    Article  CAS  Google Scholar 

  15. Li D, Zhang X, Yao J, Simon GP, Wang H (2011) Chem Commun 47:1710

    Article  CAS  Google Scholar 

  16. Li D, Zhang X, Yao J, Zeng Y, Simon GP, Wang H (2011) Soft Matter 7:10048–10056

    Article  CAS  Google Scholar 

  17. Victorov A, Radke C, Prausnitz J (2005) Phys Chem Chem Phys 8:264

    Article  Google Scholar 

  18. Claudio GC, Kremer K, Holm C (2009) J Chem Phys 131:094903

    Article  Google Scholar 

  19. Edgecombe S, Schneider S, Linse P (2004) Macromolecules 37(26):10089

    Article  CAS  Google Scholar 

  20. Victorov AI (2006) Fluid Phase Equilib 241:334

    Article  CAS  Google Scholar 

  21. Flory JP, Rehner J (1943) J Chem Phys 11:512

    Article  CAS  Google Scholar 

  22. Mann BA, Holm C, Kremer K (2005) J Chem Phys 122(15):154903

    Article  Google Scholar 

  23. Mann BA (2005) The swelling behaviour of polyelectrolyte networks. Ph.D. thesis, Johannes Gutenberg-University, Mainz

    Google Scholar 

  24. Schneider S, Linse P (2002) Eur Phys J E 8:457

    CAS  Google Scholar 

  25. Yan Q, de Pablo JJ (2003) Phys Rev Lett 91(1):018301

    Article  Google Scholar 

  26. Mann BA, Everaers R, Holm C, Kremer K (2004) Europhys Lett 67(5):786

    Article  CAS  Google Scholar 

  27. Košovan P, Richter T, Holm C, Molecular simulations[10pt] of polymeric gels

    Google Scholar 

  28. Stevens MJ, Kremer K (1993) Macromolecules 26:4717

    Article  CAS  Google Scholar 

  29. Holm C, Hofmann T, Joanny JF, Kremer K, Netz RR, Reineker P, Seidel C, Vilgis TA, Winkler RG (2004) Adv Polym Sci 166:67

    Article  CAS  Google Scholar 

  30. Mann BA, Holm C, Kremer K (2006) Macromol Symp 237:90

    Article  CAS  Google Scholar 

  31. Mann BA, Lenz O, Kremer K, Holm C (2011) Macromol Theory Simul 20:721. Cover issue

    Google Scholar 

  32. Widom B (1963) J Chem Phys 39:2802

    Article  Google Scholar 

  33. Truesdell AH (1968) Science 161(3844):884

    Article  CAS  Google Scholar 

  34. Weeks JD, Chandler D, Andersen HC (1971) J Chem Phys 54:5237

    Article  CAS  Google Scholar 

  35. Limbach HJ, Arnold A, Mann BA, Holm C (2006) Comput Phys Commun 174(9):704

    Article  CAS  Google Scholar 

  36. Arnold A, Lenz O, Kesselheim S, Weeber R, Fahrenberger F, Roehm D, Košovan P, Holm C (2013) In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations VI, vol 89. Springer, Heidelberg/New York, pp 1–23

    Chapter  Google Scholar 

  37. Espresso homepage, http://www.espressomd.org

  38. Deserno M, Holm C (1998) J Chem Phys 109:7678

    Article  CAS  Google Scholar 

  39. Oppermann W (1992) Swelling behavior and elastic properties of ionic hydrogels. In: Harland RS, Prud’homme RK (eds) Polyelectrolyte gels – properties, preparation, and applications, 1st edn. American Chemical Society, Washington, DC, p 159

    Chapter  Google Scholar 

  40. Umendra D, Metha SK, Choudhary MS, Jain R (1999) Rev Macromol Chem Phys C39:507

    Google Scholar 

  41. Vervoort S, Patlazhan S, Weyts J, Budtova T (2005) Polymer 46:121

    Article  CAS  Google Scholar 

  42. Brendel U (1999) Quellungsverhalten und mechanische eigenschaften von polyelektrolytnetzwerken und technischen superabsorbern. Ph.D. thesis, Johannes Gutenberg-Universität, Mainz

    Google Scholar 

  43. Höpfner J (2013) A new method of seawater desalination via acrylic acid based hydrogels: synthesis, characterisation, and experimental realisation. Ph.D. thesis, Karlsruher Institut für Technologie (KIT)

    Google Scholar 

  44. Skoog DA, Holler FJ, Crouch SR (2007) Principles of instrumental analysis, 6th edn. Thomson, Belmont

    Google Scholar 

  45. van Dusschoten D, Wilhelm M (2001) Rheol Acta 40:395

    Article  Google Scholar 

  46. Horvath AL (1985) Handbook of aqueous electrolyte solutions, 1st edn. Ellis Horwood Ltd., Chichester

    Google Scholar 

  47. Wolf AV, Brown MG, Prentiss PG (1986) In: Weast RC (ed) CRC handbook of chemistry and physics, 67th edn. CRC Press, Boca Raton, pp D–253

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the DFG priority program 1259 “Smart Hydrogels”. J.H. acknowledges additional financial support from the Heinrich Böll Stiftung and would like to thank the workshop team as well as Ms. Schlag, Mr. Merger, and Dr. Kübel for help on the project and this article. M.W. thanks his children for this idea while diapering them. P.K. acknowledges support from grant “LK21302 Návrat” from the Czech Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Höpfner, J., Richter, T., Košovan, P., Holm, C., Wilhelm, M. (2013). Seawater Desalination via Hydrogels: Practical Realisation and First Coarse Grained Simulations. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_19

Download citation

Publish with us

Policies and ethics