Skip to main content

Relaxation Mechanisms of Physical Hydrogels Networks

  • Conference paper
  • First Online:
Intelligent Hydrogels

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

We study the dynamic mechanical behavior of a model hydrogel subject to deformation by means of Molecular Dynamics simulation. The model has a predefined invariable chemical composition and secondary structure of entangled network, but its macroscopic response to tensile deformation varies depending on external conditions. Our model has temperature-, pH, swelling degree-, and deformation rate-responsive behavior. The model is found to respond to changes in external conditions qualitatively in the same way as real hydrogels, which serve as reference in our study. The model is focused on physical hydrogels, where the self-assembly of interacting acrylic acid (AA)-groups plays essential role in the formation of the network. In particular, as a modeled material we have chosen the poly-(lactide-glycolide)-acrylic acid PLGA − AA hydrogel, where AA-groups are believed to play the role of quasi-mobile nodes in the formation of a network. One output of the model is the change of energy density during tensile deformation which is then used to calculate the stress–strain relationship.

Structural changes were investigated both during stretching and relaxation of the system. Three different structural factors pertaining to AA-groups were monitored regarding possible changes during deformation and also when the deformation was stopped: detachment from clusters, hops between clusters, and reorientation of AA-clusters. Our results suggest that the proposed model provides a qualitatively faithful description of tensile deformation in physical hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park C, Kim S (2010) Sol–gel transition behavior of amphiphilic comb-like poly[(PEG- b-PLGA)acrylate] block copolymers. J Polym Sci Part A Pol Chem 48:1287–1297. doi:10.1002/pola.23877

    Article  CAS  Google Scholar 

  2. MacKintosh F, Kas J, Janmey P (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75:4425–4428. doi:10.1103/PhysRevLett.75.4425

    Article  CAS  Google Scholar 

  3. Djonlagic J, Zugic D, Petrovic Z (2012) High strength thermoresponsive semi-IPN hydrogels reinforced with nanoclays. J Appl Polym Sci 124:3024–3036. doi:10.1002/app.35334

    Article  CAS  Google Scholar 

  4. Miao B, Vilgis T, Poggendorf S, Sadowski G (2010) Effect of finite extensibility on the equilibrium chain size. Macromol Theor Simul 19:414–420. doi:10.1002/mats.201000009

    Article  CAS  Google Scholar 

  5. Tamai Y, Tanaka H, Nakanishi K (1996) Molecular dynamics study of polymer-water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 29:6750–6760. doi:10.1021/ma951635z

    Article  CAS  Google Scholar 

  6. He Y, Shao Q, Tsao H, Chen S, Goddard W, Jiang S (2011) Understanding three hydration-dependent transitions of zwitterionic carboxybetaine hydrogel by molecular dynamics simulations. J Phys Chem B 115:11575–11580. doi:10.1021/jp204682x

    Article  CAS  Google Scholar 

  7. James H, Guth E (1996) Simple presentation of network theory of rubber, with a discussion of other theories. J Polym Sci B 34:7–36. doi:10.1002/polb.1996.883

    Article  CAS  Google Scholar 

  8. Arruda E, Boyce M (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412. doi:10.1016/0022-5096(93)90013-6

    Article  CAS  Google Scholar 

  9. De Gennes P (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572. doi:10.1063/1.1675789

    Article  Google Scholar 

  10. Doi M, Edwards S (1978) Dynamics of concentrated polymer systems. Part 1.“Brownian motion in the equilibrium state”. J Chem Soc Farad T 2 74:1789. doi:10.1039/F29787401789

    Article  CAS  Google Scholar 

  11. Doi M, Edwards S (1978) Dynamics of concentrated polymer systems. Part 2.“Molecular motion under flow”. J Chem Soc Farad T 2 74:1802. doi:10.1039/F29787401802

    Article  CAS  Google Scholar 

  12. Chen K, Saltzman E, Schweizer K (2009) Segmental dynamics in polymers: from cold melts to ageing and stressed glasses. J Phys Condens Matter 21:503101. doi:10.1088/0953-8984/21/50/503101

    Article  CAS  Google Scholar 

  13. Warren M, Rottler J (2010) Deformation-induced accelerated dynamics in polymer glasses. J Chem Phys 133:164513. doi:10.1063/1.3505149

    Article  Google Scholar 

  14. Zidek J, Milchev A, Vilgis T (2012) Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network. J Chem Phys 137:244908. doi:10.1063/1.4769833

    Article  Google Scholar 

  15. Miyamoto S, Kollman P (1992) Molecular dynamics studies of calixspherand complexes with alkali metal cations: calculation of the absolute and relative free energies of binding of cations to a calixspherand. J Am Chem Soc 114:3668–3674. doi:10.1021/ja00036a015

    Article  CAS  Google Scholar 

  16. Hess B, Kutzner C, Van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  17. Krok M, Pamula E (2012) Poly(L-lactide-co-glycolide) microporous membranes for medical applications produced with the use of polyethylene glycol as a pore former. J Appl Polym Sci 125:E187–E199. doi:10.1002/app.36697

    Article  CAS  Google Scholar 

  18. Kwon J, Subhash G (2010) Compressive strain rate sensitivity of ballistic gelatin. J Biomech 43:420–425. doi:10.1016/j.jbiomech.2009.10.008

    Article  Google Scholar 

  19. Urayama K, Taoka Y, Nakamura K, Takigawa T (2008) Markedly compressible behaviors of gellan hydrogels in a constrained geometry at ultraslow strain rates. Polymer 49:3295–3300. doi:10.1016/j.polymer.2008.05.045

    Article  CAS  Google Scholar 

  20. Saravanakumar K, Tata B, Aswal V (2012) Thermoreversible viscoelastic to weak gel transition in a micellar ionic liquid with salt. Colloids Surf A Physicochem Eng Asp 414:359–365. doi:10.1016/j.colsurfa.2012.08.061

    Article  CAS  Google Scholar 

  21. Fernández E, Mijangos C, Guenet J, Cuberes M, López D (2009) New hydrogels based on the interpenetration of physical gels of agarose and chemical gels of polyacrylamide. Eur Polym J 45:932–939. doi:10.1016/j.eurpolymj.2008.11.041

    Article  Google Scholar 

  22. Bossard F, Aubry T, Gotzamanis G, Tsitsilianis C (2006) PH-Tunable rheological properties of a telechelic cationic polyelectrolyte reversible hydrogel. Soft Matter 2:510. doi:10.1039/b601435f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG under research project SPP 1259 Intelligent hydrogels. J. Zidek, and J. Jancar acknowledge European Regional Development Fund (CEITEC, CZ.1.05/1.1.00/02.0068). A. Milchev is indebted to the Max-Planck Institute for Polymer Research in Mainz, Germany, for hospitality during his visit and to CECAM nano SMSM for financial support.

Notice: Figs. 1a, c, 2, 3, and 10 were reprinted with permission from ref [14], Copyright (2012), American Institute of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Zidek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zidek, J., Milchev, A., Jancar, J., Vilgis, T.A. (2013). Relaxation Mechanisms of Physical Hydrogels Networks. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_17

Download citation

Publish with us

Policies and ethics