Skip to main content

Core-Shell Microgels as Nanoreactors

  • Conference paper
  • First Online:
Intelligent Hydrogels

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

  • 2394 Accesses

Abstract

Core-shell microgel particles consisting of a solid core and a shell of crosslinked PNIPA network present model systems of high interest. Here we review our recent work on the core-shell microgel particles and their application as nanoreactors for the immobilization of catalytic active metal nanoparticles or enzymes. The catalytic activity of nanoparticles can be modulated both by the volume transition and the change of polarity of the thermosensitive shell of the carrier system. Special emphasis is put on recent work on the kinetic analysis of protein adsorption onto microgel particles, which was complemented with the thermodynamic study done by ITC. All results herein demonstrate that core-shell microgel particles may serve as “active” nanoreactor for catalytically active nanostructures, namely for metal nanoparticles and enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayak S, Lyon LA (2005) Angew Chem Int Ed 44:7686–7708

    CAS  Google Scholar 

  2. Soppimath K, Tan DCW, Yang Y (2005) Adv Mater 17:318–323

    CAS  Google Scholar 

  3. Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Nature 393:149–152

    CAS  Google Scholar 

  4. Biffis A, Orlandi N, Corain B (2003) Adv Mater 15:1551–1555

    CAS  Google Scholar 

  5. Ballauff M, Lu Y (2007) Polymer 48:1815–1823

    CAS  Google Scholar 

  6. Dusek K, Patterson D (1968) J Polym Sci Part A-2 6:1209–1216

    CAS  Google Scholar 

  7. Tanaka T (1978) Phys Rev Lett 40:820–823

    CAS  Google Scholar 

  8. Shibayama M, Tanaka K (1993) Adv Polym Sci 109:1–62

    CAS  Google Scholar 

  9. Heskins M, Guillet JE (1968) J Macromol Sci Chem 2:1441–1455

    CAS  Google Scholar 

  10. Das M, Zhang H, Kumacheva E (2006) Annu Rev Mater Res 36:117–142

    CAS  Google Scholar 

  11. Singh N, Lyon LA (2007) Chem Mater 19:719

    CAS  Google Scholar 

  12. Zhang J, Xu S, Kumacheva E (2005) Adv Mater 17:2336–2340

    CAS  Google Scholar 

  13. Lu Y, Ballauff M (2011) Prog Polym Sci 36:767–792

    CAS  Google Scholar 

  14. Welsch N, Lu Y, Dzubiella J, Ballauff M (2013) Polymer, 54: 2835–2849

    Google Scholar 

  15. Pelton RH (1988) J Polym Sci A 26:9–18

    CAS  Google Scholar 

  16. Keerl M, Pedersen JS, Richtering W (2009) J Am Chem Soc 131:3093–3097

    CAS  Google Scholar 

  17. Makino K, Yamanoto S, Fujimoto K, Kawaguchi H, Oshima H (1994) J Colloid Interface Sci 166:251

    CAS  Google Scholar 

  18. Okubo M, Ahmad H (1996) Colloid Polym Sci 274:112

    CAS  Google Scholar 

  19. Kim JH, Ballauff M (1999) Colloid Polym Sci 277:1210

    CAS  Google Scholar 

  20. Dingenouts N, Norhausen C, Ballauff M (1998) Macromolecules 31:8912

    CAS  Google Scholar 

  21. Lu Y, Wittemann A, Ballauff M, Drechsler M (2006) Macromol Rapid Comm 27:1137–1141

    CAS  Google Scholar 

  22. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, StammM, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nat Mater 9:101–113

    Google Scholar 

  23. Debord JD, Lyon LA (2003) Langmuir 19:7662–7664

    CAS  Google Scholar 

  24. Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Small 3:650–657

    CAS  Google Scholar 

  25. Pinkrah VT, Snowden MJ, Mitchell JC, Seidel J, Chowdhry BZ, Fern GR (2003) Langmuir 19:585–590

    CAS  Google Scholar 

  26. Hoffmann M, Siebenbürger M, Harnau L, Hund M, Hanske C, Lu Y, Wagner CS, Drechsler M, Ballauff M (2010) Soft Matter 6:1125

    CAS  Google Scholar 

  27. Hoffmann M, Lu Y, Schrinner M, Ballauff M, Harnau L (2008) J Phys Chem B 112:14843

    CAS  Google Scholar 

  28. Chu F, Siebenbürger M, Polzer F, Stolze C, Kaiser J, Hoffmann M, Heptner N, Dzubiella J, Drechsler M, Lu Y, Ballauff M (2012) Macromol Rapid Comm 33:1042

    CAS  Google Scholar 

  29. Park JG, Forster JD, Dufresne ER (2010) J Am Chem Soc 132:5960

    CAS  Google Scholar 

  30. Wittemann A, Drechsler M, Talmon Y, Ballauff M (2005) J Am Chem Soc 127:9688

    CAS  Google Scholar 

  31. Li Z, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP (2004) Science 306:98

    CAS  Google Scholar 

  32. Crassous JJ, Ballauff M, Drechsler M, Schmidt J, Talmon Y (2006) Langmuir 22:2403–2406

    CAS  Google Scholar 

  33. Dingenouts N, Seelenmeyer S, Deike I, Rosenfeld S, Ballauff M, Lindner P, Narayanan T (2001) Phys Chem Chem Phys 3:1169–1174

    CAS  Google Scholar 

  34. Seelenmeyer S, Deike I, Rosenfeldt S, Norhausen C, Dingenouts N, Ballauff M, Narayanan T, Lindner P (2001) J Chem Phys 114:10471

    CAS  Google Scholar 

  35. Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2009) Angew Chem Int Ed 48:138–143

    Google Scholar 

  36. Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, Guardia-Girós P, Pastoriza-Santos I, Pérez-Juste J, Prato M, Liz-Marzán LM (2009) ACS Nano 3:3184–3190

    Google Scholar 

  37. Welsch N, Ballauff M, Lu Y (2011) Adv Polym Sci 234:129–163

    Google Scholar 

  38. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Angew Chem Int Ed 45:813–816

    CAS  Google Scholar 

  39. Karg M, Hellweg T (2009) J Mater Chem 19:8714–8727

    CAS  Google Scholar 

  40. Lu Y, Wittemann A, Ballauff M (2009) Macromol Rapid Commun 30:806

    CAS  Google Scholar 

  41. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) J Phys Chem B 110:3930–3937

    CAS  Google Scholar 

  42. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Chem Mater 19:1062–1069

    CAS  Google Scholar 

  43. Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) J Mater Chem 19:3955–3961

    CAS  Google Scholar 

  44. Habas S, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Nat Mater 6:692–697

    CAS  Google Scholar 

  45. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Chem Soc Rev 37:1783–1791

    CAS  Google Scholar 

  46. Ajayan PM (1999) Chem Rev 99:1787

    CAS  Google Scholar 

  47. Yuan J, Xu Y, Walther A, Bolisetty S, Schumacher M, SchmalzH, Ballauff M, Müller AHE (2008) Nat Mater 7:718–722

    CAS  Google Scholar 

  48. El-Sayed M (2001) Acc Chem Res 34:257–264

    CAS  Google Scholar 

  49. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Coord Chem Rev 249:1870–1901

    Google Scholar 

  50. Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) ACS Nano 4:7078–7086

    CAS  Google Scholar 

  51. Zhang Q, Lee I, Ge J, Zaera F, Yin Y (2010) Adv Funct Mater 20:2201–2214

    CAS  Google Scholar 

  52. Arnal P, Comotti M, Schüth F (2006) Angew Chem Int Ed 45:8224–8227

    CAS  Google Scholar 

  53. Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) Phys Chem Chem Phys 13:2449–2456

    CAS  Google Scholar 

  54. Pelton R (2010) J Colloid Interface Sci 348:673–674

    CAS  Google Scholar 

  55. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, LuY (2012) Angew Chem Int Ed 51:2229

    CAS  Google Scholar 

  56. Karg M, Pastoriza-Santos I, Liz-Marzán LM, Hellweg T (2006) Chem Phys Chem 7:2298–2301

    CAS  Google Scholar 

  57. Wu S, Kaiser J, Drechsler M, Ballauff M, Lu Y (2013) Colloid Polym Sci 291:231–237

    CAS  Google Scholar 

  58. Contreras-Cácares R, Sánchez-Iglesias A, Karg M, Pastoriza- Santos I, Pérez- Juste J, Pacifico J, Hellweg T, Fernández-BarberoA, Liz-Marzán LM (2008) Adv Mater 20:1666

    Google Scholar 

  59. Astruc D (2008) Nanoparticles and catalysis. WILEY-VCH Verlag GmbH & Co. KGa, Weinheim

    Google Scholar 

  60. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814–8820

    CAS  Google Scholar 

  61. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) ACS Catal 1:908–916

    CAS  Google Scholar 

  62. Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2010) Langmuir 26:1271–1277

    CAS  Google Scholar 

  63. Schrinner M, Proch S, Mei Y, Kempe R, Miyajima N, Ballauff M (2008) Adv Mater 20:1928–1933

    CAS  Google Scholar 

  64. Yuan C, Luo W, Zhong L, Deng H, Liu J, Xu Y, Dai L (2011) Angew Chem Int Ed 50:3515–3520

    CAS  Google Scholar 

  65. Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Chem Soc Rev 41:5577–5587

    Google Scholar 

  66. Debye P (1942) Trans Electrochem Soc 82:265–273

    Google Scholar 

  67. Smith MH, Lyon LA (2012) Acc Chem Res 45:985–993

    CAS  Google Scholar 

  68. Raemdonck K, Demeester J, De Smedt S (2009) Soft Matter 5:707–715

    CAS  Google Scholar 

  69. Deka SR, Quarta A, Di Corato R, Riedinger A, Cingolani R, Pellegrino T (2011) Nanoscale 3:619–629

    CAS  Google Scholar 

  70. Murthy N, Xu M, Schuck S, Kunisawa J, Shastri N, Frechet JM (2003) Proc Natl Acad Sci U S A 100:4995–5000

    CAS  Google Scholar 

  71. Huang X, Yin YZ, Tang Y, Bai XL, Zhang ZM, Xu JY, Liu JQ, Shen JC (2009) Soft Matter 5:1905–1911

    Google Scholar 

  72. Gawlitza K, Wu C, Georgieva R, Wang D, Ansorge-Schumacher MB, von Klitzing R (2012) Phys Chem Chem Phys 14(27):9594–9600

    CAS  Google Scholar 

  73. Jia X, Kiick KL (2009) Macromol Biosci 9:140–156

    CAS  Google Scholar 

  74. Seliktar D (2012) Science 336:1124–1128

    CAS  Google Scholar 

  75. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Chem Rev 111:5610–5637

    CAS  Google Scholar 

  76. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) ACS Nano 4:3623–3632

    CAS  Google Scholar 

  77. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) J Am Chem Soc 133:2525–2534

    CAS  Google Scholar 

  78. Deng ZJ, Liang MT, Monteiro M, Toth I, Minchin RF (2011) Nat Nanotechnol 6:39–44

    CAS  Google Scholar 

  79. Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Proc Natl Acad Sci U S A 104:8691–8696

    CAS  Google Scholar 

  80. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Adv Drug Deliver Rev 61:428–437

    CAS  Google Scholar 

  81. You CC, Agasti SS, De M, Knapp MJ, Rotello VM (2006) J Am Chem Soc 128:14612–14618

    CAS  Google Scholar 

  82. Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Small 5:470–476

    CAS  Google Scholar 

  83. Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, Mailander V, Musyanovych A, Landfester K (2011) Macromol Biosci 11:628–638

    CAS  Google Scholar 

  84. Kumar S, Aswal VK, Kohlbrecher J (2011) Langmuir 27:10167–10173

    CAS  Google Scholar 

  85. Koutsopoulos S, Patzsch K, Bosker WTE, Norde W (2007) Langmuir 23:2000–2006

    CAS  Google Scholar 

  86. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) ACS Nano 5(9):7503–7509

    Google Scholar 

  87. De M, You CC, Srivastava S, Rotello VM (2007) J Am Chem Soc 129:10747–10753

    CAS  Google Scholar 

  88. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Nanomed-Nanotechnol 5:106–117

    CAS  Google Scholar 

  89. Xia XR, Monteiro-Riviere NA, Riviere JE (2010) Nat Nanotechnol 5:671–675

    CAS  Google Scholar 

  90. van der Veen M, Stuart MC, Norde W (2007) Colloids Surf B Biointerfaces 54:136–142

    Google Scholar 

  91. Herrwerth S, Eck W, Reinhardt S, Grunze M (2003) J Am Chem Soc 125:9359–9366

    CAS  Google Scholar 

  92. Wittemann A, Haupt B, Ballauff M (2003) Phys Chem Chem Phys 5:1671–1677

    CAS  Google Scholar 

  93. Anikin K, Rocker C, Wittemann A, Wiedenmann J, Ballauff M, Nienhaus GU (2005) J Phys Chem B 109(12):5418–5420

    CAS  Google Scholar 

  94. Henzler K, Haupt B, Lauterbach K, Wittemann A, Borisov O, Ballauff M (2010) J Am Chem Soc 132:3159–3163

    CAS  Google Scholar 

  95. Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Phys Rev Lett 100:158301

    Google Scholar 

  96. Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Phys Chem Chem Phys 13:17599–17605

    CAS  Google Scholar 

  97. Smith MH, Lyon LA (2011) Macromolecules 44:8154–8160

    CAS  Google Scholar 

  98. Li Y, de Vries R, Kleijn M, Slaghek T, Timmermans J, Stuart MC, Norde W (2010) Biomacromolecules 11:1754–1762

    CAS  Google Scholar 

  99. Li YA, Kleijn JM, Stuart MAC, Slaghek T, Timmermans J, Norde W (2011) Soft Matter 7:1926–1935

    CAS  Google Scholar 

  100. Li Y, Zhang Z, van Leeuwen HP, Cohen Stuart MA, Norde W, Kleijn JM (2011) Soft Matter 7:10377–10385

    CAS  Google Scholar 

  101. Li Y, Norde W, Kleijn JM (2012) Langmuir 28:1545–1551

    CAS  Google Scholar 

  102. Malmsten M, Bysell H, Hansson P (2010) Curr Opin Colloid Interface Sci 15:435–444

    CAS  Google Scholar 

  103. Johansson C, Hansson P, Malmsten M (2009) J Phys Chem B 113:6183–6193

    CAS  Google Scholar 

  104. Johansson C, Hansson P, Malmsten M (2007) J Colloid Interface Sci 316:350–359

    CAS  Google Scholar 

  105. Bysell H, Månsson R, Hansson P, Malmsten M (2011) Adv Drug Deliver Rev 63:1172–1185

    CAS  Google Scholar 

  106. Hoshino Y, Koide H, Furuya K, Haberaecker WW, Lee SH, Kodama T, Kanazawa H, Oku N, Shea KJ (2012) Proc Natl Acad Sci U S A 109:33–38

    CAS  Google Scholar 

  107. Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Colloid Polym Sci 270:53–57

    CAS  Google Scholar 

  108. Shamim N, Liang H, Hidajat K, Uddin MS (2008) J Colloid Interface Sci 320:15–21

    CAS  Google Scholar 

  109. Halperin A, Kroger M (2011) Macromolecules 44:6986–7005

    CAS  Google Scholar 

  110. Cole MA, Voelcker NH, Thissen H, Horn RG, Griesser HJ (2010) Soft Matter 6:2657–2667

    CAS  Google Scholar 

  111. Cole MA, Jasieniak M, Thissen H, Voelcker NH, Griesser HJ (2009) Anal Chem 81:6905–6912

    CAS  Google Scholar 

  112. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Nano Lett 7:914–920

    CAS  Google Scholar 

  113. Grabstain V, Bianco-Peled H (2003) Biotechnol Prog 19:1728–1733

    CAS  Google Scholar 

  114. Welsch N, Wittemann A, Ballauff M (2009) J Phys Chem B 113:16039–16045

    CAS  Google Scholar 

  115. Bysell H, Hansson P, Malmsten M (2010) J Phys Chem B 114:7207–7215

    CAS  Google Scholar 

  116. Bysell H, Ransson P, Schmidtchen A, Malmsten M (2010) J Phys Chem B 114:1307–1313

    CAS  Google Scholar 

  117. Becker AL, Welsch N, Schneider C, Ballauff M (2011) Biomacromolecules 12:3936–3944

    CAS  Google Scholar 

  118. Welsch N, Becker AL, Dzubiella J, Ballauff M (2012) Soft Matter 8:1428–1436

    CAS  Google Scholar 

  119. Yigit C, Welsch N, Ballauff M, Dzubiella J (2012) Langmuir 28:14373–14385

    CAS  Google Scholar 

  120. Wittemann A, Ballauff M (2004) Anal Chem 76:2813–2819

    CAS  Google Scholar 

  121. Jackler G, Wittemann A, Ballauff M, Czeslik C (2004) Spectroscopy 18:289–299

    CAS  Google Scholar 

  122. Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Biomacromolecules 8:3674–3681

    CAS  Google Scholar 

  123. Dousseau F, Pezolet M (1990) Biochemistry 29:8771–8779

    CAS  Google Scholar 

  124. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) Nat Nanotechnol 4:577–580

    Google Scholar 

  125. Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) PLoS One 5:e10949

    Google Scholar 

  126. Welsch N, Dzubiella J, Graebert A, Ballauff M (2012) Soft Matter 8:12043–12052

    CAS  Google Scholar 

  127. Azizian S (2004) J Colloid Interface Sci 276:47–52

    CAS  Google Scholar 

  128. Jackson MB (2006) Molecular and cellular biophysics. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft, SPP “Intelligente Hydrogele” and the Helmholtz Virtual Institute are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Lu or Matthias Ballauff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Lu, Y., Welsch, N., Dzubiella, J., Ballauff, M. (2013). Core-Shell Microgels as Nanoreactors. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_10

Download citation

Publish with us

Policies and ethics