Skip to main content

Supramolecular Chromaticity and Thermoresponsive Hydrogels: A Self-Assembly Study on Maleamic Acid-Based Amphiphiles

  • Conference paper
  • First Online:
Intelligent Hydrogels

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

  • 2388 Accesses

Abstract

A new class of homologous low molecular weight amphiphiles based on maleamic acid was synthesized and investigated in terms of its self-assembly behavior in bulk and in solution. The unexpected yellow color as bulk material and in organic solvents was revealed by means of spectroscopic and theoretical investigations to originate from intermolecular π-π interactions yielding supramolecular chromophores. It was found that the length of the alkyl chain of the amphiphiles and the resulting hydrophilic/lipophilic balance dictates the aggregation mode in bulk. One special compound exhibiting an n-tetradecyl chain was found to form stable thermoreversible supramolecular hydrogels in aqueous sodium hydroxide solutions. The corresponding hydrogels feature a rare cellular bilayer-based morphology and can be transferred into viscoelastic solutions upon heating and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only molecule peak (m+) and peaks with relative intensities ≥ 10 % are listed in the corresponding characterization datasets for compounds 16.

  2. 2.

    The multiplicity of this signal cannot be determined as it is covered by the signal of DMSO. However, the presence of this peak can be proven by HH-COSY NMR experiments. This is also the case for compounds26.

  3. 3.

    5 has been favored over 6 that features the longest alkyl chain because the former shows higher solubilities in organic media.

  4. 4.

    The hydrogel samples prepared from 5 in aq. NaOH sol. can be stored under ambient conditions for more than a year without any recognizable decomposition.

  5. 5.

    It has to be noted that solutions of 5 in aq. NaOH sol. at elevated temperatures as well as hydrogels of 5 (where in both cases 5 is transformed in situ into the corresponding sodium carboxylate 5Na) do not show any color. In contrast, a comparable sample of 1 in aq. NaOH sol. (1Na) exhibits a pale yellow color. We explain this by a strong difference of the HLB that leads to different favored aggregation modes of the corresponding sodium carboxylates 1Na and 5Na (π-π vs. van der Waals interactions).

  6. 6.

    The onset of the melting peak of the μDSC traces is in good agreement with macroscopically observed gel melting at ca. 35–36 °C (“falling steel ball method”, ca. 1 °C min−1).

References

  1. a) de Loos M, Feringa BL, van Esch JH (2005) Eur J Org Chem 17:3615–3631; b) Estroff LA, Hamilton AD (2004) Chem Rev 104:1201–1217

    Google Scholar 

  2. Weiss RG, Terech P (eds) (2006) Molecular gels. Springer, Dordrecht

    Google Scholar 

  3. a) van Esch JH, Feringa BL (2000) Angew Chem Int Ed 39:2263–2266; b) Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836; c) Hirst AR, Escuder B, Miravet JF, Smith DK (2008) Angew Chem Int Ed 47:8002–8018

    Google Scholar 

  4. a) Cheng G, Castelletto V, Jones RR, Connon CJ, Hamley IW (2011) Soft Matter 7:1326–1333; b) Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Biomacromolecules 10:2646–2651; c) Wang W, Wang H, Ren C, Wang J, Tan M, Shen J, Yang Z, Wang PG, Wang L (2011) Carbohyd Res 346:1013–1017

    Google Scholar 

  5. a) Xu X-D, Liang L, Chen C-S, Lu B, Wang N-L, Jiang F-G, Zhang X-Z, Zhuo R-X (2010) Appl Mater Int 2:2663–2671; b) Yang Z, Xu K, Wang L, Gu H, Wie H, Zhang M, Xu B (2005) Chem Commun 35:4414–4416

    Google Scholar 

  6. a) Adhikari B, Palui G, Banerjee A (2009) Soft Matter 5:3452–3460; b) Song S, Feng L, Song A, Hao J (2012) J Phys Chem B 116:12850–12856

    Google Scholar 

  7. Gao Y, Long MJC, Shi J, Xu B (2012) Chem Commun 48:8404–8406

    Article  CAS  Google Scholar 

  8. Ikeda M, Fukuda K, Tanida T, Yoshii T, Hamachi I (2012) Chem Commun 48:2716–2718

    Article  CAS  Google Scholar 

  9. a) Mitra RN, Das PK (2008) J Phys Chem C 112:8159–8166; b) Chakrabarty A, Maitra U, Das AD (2012) J Mater Chem 22: 8268–18274; c) Dash J, Patil AJ, Das RN, Dowdall FL, Mann S (2011) Soft Matter 7:120–8126; d) Piepenbrock M-OM, Clarke N, Steed JW (2011) Soft Matter 7:412–2418

    Google Scholar 

  10. a) Huang R, Qi W, Feng L, Su R, He Z (2011) Soft Matter 7:6222–6230; b) Díaz Díaz D, Morin E, Schön EM, Budin G, Wagner A, Remy J-S (2011) J Mater Chem 21:641–644; c) Huang Y, Qiu Z, Xu Y, Shi J, Lin H, Zhang Y (2011) Org Biomol Chem 9:2149–2155; d) Rodríguez-Llansola F, Miravet JF, Escuder B (2011) Chem Commun 47:4706–4708; e) Naskar J, Palui G, Banerjee A (2009) J Phys Chem B 113:11787–11792; f) Sutton S, Campbell NL, Cooper AI, Kirkland M, Frith WJ, Adams DJ (2009) Langmuir 25:10285–10291; g) Liang G, Yang Z, Zhang R, Li L, Fan Y, Kuang Y, Gao Y, Wang T, Lu WW, Xu B (2009) Langmuir 25:8419–8422; h) Cao S, Fu X, Wang N, Wang H, Yang Y (2008) Int J Pharm 357:95–99; i) Friggeria A, Feringa BL, van Esch J (2004) J Control Release 97:241–248; j) Ikeda M, Ochi R, Wada A, Hamachi I (2010) Soft Matter 1:491–498; k) Jadhav SR, Chiou B-S, Wood DF, DeGrande-Hoffman G, Glenn GM, John G (2011) Soft Matter 7:864–867; l) Boekhoven J, Koot M, Wezendonk TA, Eelkema R, van Esch JH (2012) J Am Chem Soc 134:12908–12911; m) van Bommel KJC, Stuart MCA, Feringa BL, van Esch J (2005) Org Biomol Chem 3:2917–2920; n) Zhang J, Guo D-S, Wang L-H, Wang Z, Liu Y (2011) Soft Matter 7:1756–1762; o) Vemula PK, Cruikshank GA, Karp JM, John G (2009) Biomaterials 30:383–393

    Google Scholar 

  11. a) Bernet A, Behr M, Schmidt H-W (2011) Soft Matter 7:1058–1065; b) Bernet A, Behr M, Schmidt H-W (2012) Soft Matter 8:4873–4876

    Google Scholar 

  12. Isaev RN, Ishkov AV, Lobanova TV (2001) J Anal Chem 56:249–252

    Article  Google Scholar 

  13. Arnold LA, Kosinski A, Estébanez-Perpiñá E, Guy RK (2007) J Med Chem 50:5269–5280

    Article  CAS  Google Scholar 

  14. a) Lin K, Lin J, Cheng C-H (1996) Polymer 37:4729–4737; b) Zhao Y-W (2007) Huagong Jishu Yu Kaifa (Technology and Development of Medical Industry) 36:38–41; c) Xing J-J, Liu L, Qian J-H, Zhang Y-P (2009) Huaxue Shiji (Chemical Reagents) 31:352–354

    Google Scholar 

  15. Paleos CM, Margomenou-leonidopoulou G, Margaritis LH, Terzis A (1985) Mol Cryst Liq Cryst 129:127–135

    Article  CAS  Google Scholar 

  16. Frkanec L, Jokić M, Makarević J, Wolsperger K, Žinić M (2002) J Am Chem Soc 124:9716–9717

    Article  CAS  Google Scholar 

  17. Gaspar LJM, Baskar G (2005) J Mater Chem 15:5144–5150

    Article  CAS  Google Scholar 

  18. a) Gaspar LJM, Baskar G (2005) Chem Commun 28:3603–3605; b) Gaspar LJM, Baskar G (2006) Langmuir 22:2795–2801

    Google Scholar 

  19. Zhang S, Fu X, Wang H, Yang Y (2008) J Sep Sci 31:3782–3787

    Article  CAS  Google Scholar 

  20. Kar T, Debnath S, Das D, Shome A, Das PK (2009) Langmuir 25:8639–8648

    Article  CAS  Google Scholar 

  21. Lim M, Hochstrasser RMJ (2001) Chem Phys 115:7629–7643

    Article  CAS  Google Scholar 

  22. Nayak MK, Kim B-H, Kwon JE, Park S, Seo J, Chung JW, Park SY (2010) Chem Eur J 16:7437–7447

    Article  CAS  Google Scholar 

  23. Lo KM, Ng SW (2009) Acta Cryst E65:o1101

    Google Scholar 

  24. Prasad SM, Sinha RBP, Mandal DK, Rani A (2002) Acta Cryst E58:o1296–o1297

    Google Scholar 

  25. Prasad SM, Sinha RBP, Mandal DK, Rani A (2002) Acta Cryst E58:o891–o892

    Google Scholar 

  26. Srivastava AK (1978) Z Kristallogr 148:21–28

    Article  Google Scholar 

  27. a) Lim M, Hochstrasser RM (2001) J Chem Phys 115:7629–7643; b) Fujii Y, Yamada H, Mizuta M (1988) J Phys Chem 92:6768–6772; c) Murty TSSR (1971) J Phys Chem 75:1330–1332; d) Bulmer JT, Shurvell HF (1973) J Phys Chem 77:256–262

    Google Scholar 

  28. Liu Y, Wang T, Liu M (2012) Chem Eur J 18:14650–14659

    Article  CAS  Google Scholar 

  29. Davies TS, Ketner AM, Raghavan SR (2006) J Am Chem Soc 128:6669–6675

    Article  CAS  Google Scholar 

  30. Angayarkanny S, Vijay R, Baskar G, Mandal AB (2012) Langmuir 28:9378–9386

    Article  CAS  Google Scholar 

  31. Marsh D (2012) Chem Phys Lipids 165:59–76

    Article  CAS  Google Scholar 

  32. Bieser AM, Tiller JC (2007) J Phys Chem B 111:13180–13187

    Article  CAS  Google Scholar 

  33. a) Wang D, Hao J (2011) Langmuir 27:1713–1717; b) Yuan Z, Lu W, Liu W, Hao J (2008) Soft Matter 4:1639–1644; c) Raue M, Bernet A, Küppers M, Stapf S, Schmidt H-W, Blümich B, Mang~T (2013) Sodium NMR relaxation: a versatile non-invasive tool for the monitoring of phase transitions and the estimation of effective pore sizes of supramolecular hydrogels. In: Sadowski G, Richtering W (eds) Intelligent hydrogels. Springer, Cham/Heidelberg/New York/Dordrecht/London, pp 45–52

    Google Scholar 

  34. a) Cates ME, Candau SJ (1990) J Phys Condens Matter 2:6869–6892; b) Hoffmann H (1994) Statics and dynamics of worm-like surfactant micelles. In: Herb CA, Prud’homme, RK (eds) Structure and flow in surfactant solutions. American Chemical Society, Washington, DC, pp. 2–31

    Google Scholar 

  35. Wang T, Jiang J, Liu Y, Li Z, Liu M (2010) Langmuir 26:18694–18700

    Article  CAS  Google Scholar 

  36. Moreau L, Barthélémy P, El Maataoui M, Grinstaff MW (2004) J Am Chem Soc 126:7533–7539

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support by the German Research Foundation (DFG) in the frame of Priority Programme SPP 1259 “Intelligente Hydrogele” is gratefully acknowledged. Computational studies were carried out in the frame of Research Training Group GRK 1640 “Photophysics of Synthetic and Biological Multichromophoric Systems”. We thank M. Bieligmeyer, M. Schieder, C. Stelling, N. Al Nakeeb, S. Ganzleben and J. Failner for their support during synthesis and characterization of the compounds. B. Gossler is acknowledged for the cryo-SEM investigations. We are indebted to Dr. M. Drechsler for conducting the cryo-TEM experiments and Dr. M. Krekhova for the ff-TEM examinations. We thank B. Brunner (Prof. A. Jess, Chemical Engineering) for carrying out the elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bernet .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

BERNET HW SCHMIDT et al suppl information.doc

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Bernet, A., Behr, M., Albuquerque, R.Q., Schmidt, M., Senker, J., Schmidt, HW. (2013). Supramolecular Chromaticity and Thermoresponsive Hydrogels: A Self-Assembly Study on Maleamic Acid-Based Amphiphiles. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_1

Download citation

Publish with us

Policies and ethics