Advertisement

Stratified Interpolyelectrolyte Complexes: Fabrication, Structure and Properties

  • Eduardo GuzmánEmail author
  • Marta Ruano
  • Francisco Ortega
  • Ramón G. Rubio
Chapter
  • 1.4k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The electrostatic Layer-by-Layer (LbL) technique allows the fabrication of polyelectrolyte multilayers that can be considered as a special type of inter-polyelectrolyte complexes supported by a template (fluid or solid). The main characteristic that confers special interest to these interpolyelectrolyte complexes is the simplicity and versatility of the method used for their fabrication, although in some cases this may hide the complex influence of the different physico-chemical variables. The possibility to change ionic strength, pH, temperature, etc. and/or the composition makes possible to control the properties and structure of these systems. Furthermore, the compositional and structural richness of these systems opens multiple possibilities for the fabrication of nano-structured materials with tailored properties for numerous applications (from optical to nanomedical devices). This chapter deal with the physico-chemical background of the fabrication of supramolecular films by the LbL method as well as the key properties that should be managed in order to obtain functional materials following this approach.

Keywords

Ionic Strength Hyaluronic Acid Charge Compensation Adsorption Time Entropic Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by MINECO under Grant FIS2012-38231-C02-01, by ESA under Grants MAP AO-00-052 (FASES) and PASTA, and by EU under Grant Marie Curie ITN-COWET, and carried out in the framework of the ERF COST actions CM1101 “Colloidal Aspects of Nanoscience for Innovative Processes and Materials”. We are grateful to the UIRC of the CAI of Spectroscopy (Universidad Complutense de Madrid) for the use of their facilities.

References

  1. 1.
    Kabanov, V.A., Zezin, A.B.: Soluble interpolymeric complexes as a new class of synthetic polyelectrolytes. Pure Appl. Chem. 56, 343–354 (1984)Google Scholar
  2. 2.
    Koetz, J., Kosmella, S.: Polyelectrolytes and Nanoparticles. Springer, Berlin (2007)Google Scholar
  3. 3.
    Thunemann, A.F., Muller, M., Dautzenberg, H., Joanny, J.F.O., Lowen, H.: Polyelectrolyte complexes. In: Schmidt, M. (ed.) Polyelectrolyte with Defined Molecular Architecture II, pp. 113–171. Springer, Berlin (2004)Google Scholar
  4. 4.
    Philipp, B., Dautzenberg, H., Linow, K.J., Kötz, J., Dawydoff, W.: Polyelectrolyte complexes—recent developments and open problems. Prog. Polym. Sci. 14, 91–172 (1989)Google Scholar
  5. 5.
    van der Gucht, J., Spruijt, E., Lemmers, M., Cohen Stuart, M.A.: Polyelectrolyte complexes: bulk phases and colloidal systems. J. Colloid Interface Sci. 361, 407–422 (2011)Google Scholar
  6. 6.
    Ariga, K., Moria, T., Hilla, J.P.: Evolution of molecular machines: from solution to soft matter interface. Soft Matter 8, 15–20 (2012)Google Scholar
  7. 7.
    Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9, 2319–2340 (2007)Google Scholar
  8. 8.
    Iler, R.K.: Multilayers of colloidal Particles. J. Colloid Interface Sci. 21, 569–594 (1966)Google Scholar
  9. 9.
    Decher, G., Eckle, M., Schmitt, J., Struth, B.: Layer-by-layer assembled multicomposite films. Curr. Opin. Colloid Interface Sci. 3, 32–39 (1998)Google Scholar
  10. 10.
    Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997)Google Scholar
  11. 11.
    Decher, G., Schmitt, J.: Fine-tuning of the film thickness of ultrathin multilayer film composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Prog. Colloid Polym. Sci. 89, 160–164 (1992)Google Scholar
  12. 12.
    Lvov, Y., Decher, G., Möhwald, H.: Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9, 481–486 (1993)Google Scholar
  13. 13.
    Decher, G., Schlenoff, J.B.: Multilayer Thin Films-Sequential Assembly of Nanocomposite Materials. Wiley-VCH Verlag, Berlin (2003)Google Scholar
  14. 14.
    Schlenoff, J.B.: Retrospective on the Future of Polyelectrolyte Multilayers. Langmuir 25, 14007–14010 (2009)Google Scholar
  15. 15.
    de Villiers, M.M., Otto, D.P., Strydom, S.J., Lvov, Y.M.: Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Deliv. Rev. 63, 701–715 (2011)Google Scholar
  16. 16.
    Lavalle, P., Voegel, J.-C., Vautier, D., Senger, B., Schaaf, P., Ball, V.: Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials. Adv Mat 23, 1191–1221 (2011)Google Scholar
  17. 17.
    de Villiers, M.M., Lvov, Y.M.: Layer-by-layer self-assembled nanoshells for drug delivery. Adv. Drug Deliv. Rev. 63, 699–700 (2011)Google Scholar
  18. 18.
    Langmuir, I., Schaefer, V.J.: Monolayers and multilayers of chlorophyll. J. Am. Chem. Soc. 59, 2075–2076 (1937)Google Scholar
  19. 19.
    Blodgett, K.B.: Films built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc. 57, 1007–1022 (1935)Google Scholar
  20. 20.
    Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M.: Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005)Google Scholar
  21. 21.
    Nuzzo, R.G., Allara, D.L.: Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983)Google Scholar
  22. 22.
    Bain, C.D., Whitesides, G.M.: Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain. J. Am. Chem. Soc. 111, 7164–7175 (1989)Google Scholar
  23. 23.
    Li, Y., Wang, X., Sun, J.: Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. 41, 5998–6009 (2012)Google Scholar
  24. 24.
    Decher, G., Hong, J.D.: Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromol. Chem. Macromol. Symp. 46, 321–327 (1991)Google Scholar
  25. 25.
    Decher, G., Hong, J.D.: Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsenges. Phys. Chem. 95, 1430–1434 (1991)Google Scholar
  26. 26.
    Guzmán, E., Ortega, F., Prolongo, M.G., Rubio, M.A., Rubio, R.G.: On the way to functional coatings: polyelectrolyte multilayers. J. Mat. Sci. Eng. USA 4(10), 1–13 (2010)Google Scholar
  27. 27.
    Gao, M.Y., Gao, M.L., Zhang, X., Yang, Y., Yang, B., Shen, J.C.: Constructing PbI2 nanoparticles into a multilayer structure using the molecular deposition (MD) method. J. Chem. Soc. Chem. Commun. 1994, 2777–2778 (1994)Google Scholar
  28. 28.
    He, J.-A., Valluzzi, R., Yang, K., Dolukhanyan, T., Sung, C., Kumar, J., Tripathy, S.K., Samuelson, L., Balogh, L., Tomalia, D.A.: Electrostatic multilayer deposition of a gold-dendrimer nanocomposite. Chem Mat 11, 3268–3274 (1999)Google Scholar
  29. 29.
    Serpe, Michael J., Jones, Clinton D., Andrew Lyon, L.: Layer-by-layer deposition of thermoresponsive microgel thin films. Langmuir 19, 8759–8764 (2003)Google Scholar
  30. 30.
    Ariga, K., Lvov, Y., Kunitake, T.: Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 119, 2224–2231 (1997)Google Scholar
  31. 31.
    Casson, J.L., Wang, H.-L., Roberts, J.B., Parikh, A.N., Robinson, J.M., Johal, M.S.: Kinetics and interpenetration of ionically self-assembled dendrimer and PAZO multilayers. J. Phys. Chem. B 106, 1697–1702 (2002)Google Scholar
  32. 32.
    Li, Y.-C., Schulz, J., Mannen, S., Delhom, C., Condon, B., Chang, S., Zammarano, M., Grunlan, J.C.: Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4, 3325–3337 (2012)Google Scholar
  33. 33.
    Zhuk, A., Mirza, R., Sukhishvili, S.: Multiresponsive clay-containing layer-by-layer films. ACS Nano 5, 8790–8799 (2011)Google Scholar
  34. 34.
    Priolo, M.A., Gamboa, D., Holder, K.M., Grunlan, J.C.: Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett. 10, 4970–4974 (2010)Google Scholar
  35. 35.
    Correa-Duarte, M.A., Kosiorek, A., Kandulski, W., Giersig, M., Liz-Marzán, L.M.: Layer-by-layer assembly of multiwall carbon nanotubes on spherical colloids. Chem. Mat. 17, 3268–3272 (2005)Google Scholar
  36. 36.
    Qin, S., Qin, D., Ford, W.T., Herrera, J.E., Resasco, D.E.: Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films. Macromolecules 37, 9963–9967 (2004)Google Scholar
  37. 37.
    Salloum, D.S., Schlenoff, J.B.: Protein adsorption modalities on polyelectrolyte multilayers. Biomacromolecules 5, 1089–1096 (2004)Google Scholar
  38. 38.
    Jackler, G., Czeslik, C., Steitz, R., Royer, C.A.: Spatial distribution of protein molecules adsorbed at a polyelectrolyte multilayer. Phys. Rev. E 71, 041912 (2005)Google Scholar
  39. 39.
    Svensson, O., Lindh, L., Cárdenas, M., Arnebrant, T.: Layer-by-layer assembly of mucin and chitosan: influence of surface properties, concentration and type of mucin. J. Colloid Interface Sci. 299, 608–616 (2006)Google Scholar
  40. 40.
    Watanabe, J., Shen, H., Akashi, M.: Polyelectrolyte droplets facilitate versatile layer-by-layer coating for protein loading interface. Acta Biomat. 4, 1255–1262 (2008)Google Scholar
  41. 41.
    Pedano, M.L., Martel, L., Desbrieres, J., Defrancq, E., Dumy, P., Coche-Guerente, L., Labbé, P., Legrand, J.-F., Calemczuk, R., Rivas, G.A.: Layer-by-layer deposition of chitosan derivatives and DNA on gold surfaces for the development of biorecognition layers. Anal. Lett. 37, 2235–2250 (2004)Google Scholar
  42. 42.
    He, P., Bayachou, M.: Layer-by-layer fabrication and characterization of dna-wrapped single-walled carbon nanotube particles. Langmuir 21, 6086–6092 (2005)Google Scholar
  43. 43.
    Lvov, Y., Haas, H., Decher, G., Möhwald, H.: Successive deposition of alternate layers of polyelectrolytes and a charged virus. Langmuir 10, 4232–4236 (1994)Google Scholar
  44. 44.
    Stockton, W.B., Rubner, M.F.: Molecular-level processing of conjugated polymers. 4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30, 2717–2725 (1997)Google Scholar
  45. 45.
    Wang, L.Y., Wang, Z.Q., Zhang, X., Shen, J.C.: A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun. 18, 509–514 (1997)Google Scholar
  46. 46.
    Shimazaki, Y., Mitsuishi, M., Ito, S., Yamamoto, M.: Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction. Langmuir 13, 1385–1387 (1997)Google Scholar
  47. 47.
    Anzai, J., Kobayashi, Y., Nakamura, N., Nishimura, M., Hoshi, T.: Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s. Langmuir 15, 221–226 (1999)Google Scholar
  48. 48.
    Bourdillon, C., Demaille, C., Moiroux, J., Savéant, J.M.: Step-by-Step immunological construction of a fully active multilayer enzyme electrode. J. Am. Chem. Soc. 116, 10328–10329 (1994)Google Scholar
  49. 49.
    Xiong, H.M., Cheng, M.H., Zhou, Z., Zhang, X., Shen, J.C.: A new approach to the fabrication of a self-organizing film of heterostructured polymer/Cu2S nanoparticles. Adv. Mater. 10, 529–532 (1998)Google Scholar
  50. 50.
    Sukhorukov, G.B., Donath, E., Lichtenfeld, H., Knippel, E., Knippel, M., Budde, A., Möhwald, H.: Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf. A 137, 253–266 (1998)Google Scholar
  51. 51.
    Donath, E., Sukhorukov, G.B., Caruso, F., Davis, S.A., Möhwald, H.: Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37, 2201–2205 (1998)Google Scholar
  52. 52.
    Caruso, F., Donath, E., Möhwald, H.: Influence of polyelectrolyte multilayer coatings on förster resonance energy transfer between 6-carboxyfluorescein and rhodamine b-labeled particles in aqueous solution. J. Phys. Chem. B 102, 2011–2016 (1998)Google Scholar
  53. 53.
    Guzmán, E., Ritacco, H., Ortega, F., Svitova, T., Radke, C.J., Rubio, R.G.: Adsorption kinetics and mechanical properties of ultrathin polyelectrolyte multilayers: liquid-supported versus solid-supported films. J. Phys. Chem. B 113, 7128–7137 (2009)Google Scholar
  54. 54.
    Ferri, J.K., Dong, W.-F., Miller, R., Mohwald, H.: Elastic moduli of asymmetric ultrathin free-standing polyelectrolyte nanocomposites. Macromolecules 39, 1532–1537 (2006)Google Scholar
  55. 55.
    Ferri, J.K., Dong, W.-F., Miller, R.: Ultrathin free-standing polyelectrolyte nanocomposites: a novel method for preparation and characterization of assembly dynamics. J. Phys. Chem. B 109, 14764–14768 (2005)Google Scholar
  56. 56.
    Shchukina, E.M., Shchukin, D.G.: Layer-by-layer coated emulsion microparticles as storage and delivery tool. Curr. Opin. Colloid Interface Sci. 17, 281–289 (2012)Google Scholar
  57. 57.
    Cuomo, F., Lopez, F., Miguel, M.G., Lindman, B.: Vesicle-templated layer-by-layer assembly for the production of nanocapsules. Langmuir 26, 10555–10560 (2010)Google Scholar
  58. 58.
    Kozlovskaya, V., Zavgorodnya, O., Chen, Y., Ellis, K., Tse, H.M., Cui, W., Thompson, J.A., Kharlampieva, E.: Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv Funct Mat 22, 3389–3398 (2012)Google Scholar
  59. 59.
    Denkbas, E.B., Ottenbrite, R.M.: Perspectives on: chitosan drug delivery systems based on their geometries. J. Bioactive Compatible Polym. 21, 351–368 (2006)Google Scholar
  60. 60.
    Hammond, P.T.: Building biomedical materials layer-by-layer. Mater. Today 15, 196–205 (2012)Google Scholar
  61. 61.
    Zheng, S., Tao, C., He, Q., Zhu, H., Li, J.: Self-assembly and characterization of polypyrrole and polyallylamine multilayer films and hollow shells. Chem. Mater. 16, 3677–3681 (2004)Google Scholar
  62. 62.
    Dauginet, L., Duwez, A.-S., Demoustier-Champagne, R.L.S.: Surface modification of polycarbonate and poly(ethylene terephthalate) films and membranes by polyelectrolyte deposition. Langmuir 17, 3952–3957 (2001)Google Scholar
  63. 63.
    Kumar, B., Park, Y.T., Castro, M., Grunlan, J.C., Feller, J.F.: Fine control of carbon nanotubes–polyelectrolyte sensors sensitivity by electrostatic layer by layer assembly (eLbL) for the detection of volatile organic compounds (VOC). Talanta 88, 396–402 (2012)Google Scholar
  64. 64.
    Fou, A.C., Onitsuka, O., Ferreira, M., Rubner, M.F., Hsieh, B.R.: Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene). J. Appl. Phys. 79, 7501–7509 (1996)Google Scholar
  65. 65.
    Laurent, D., Schlenoff, J.B.: Multilayer assemblies of redox polyelectrolytes. Langmuir 13, 1552–1557 (1997)Google Scholar
  66. 66.
    Laschewsky, A., Mayer, B., Wischerhoff, E., Arys, X., Bertrand, P., Delcorte, A., Jonas, A.: A new route to thin polymeric, non-centrosymmetric coatings. Thin Solid Films 284–285, 334–337 (1996)Google Scholar
  67. 67.
    De Geest, B.G., Sukhorukov, G.B., Möhwald, H.: The pros and cons of polyelectrolyte capsules in drug delivery. Expert Opin. Drug Deliv. 6, 614–624 (2009)Google Scholar
  68. 68.
    Shchukin, D.G., Möhwald, H.: Self-repairing coatings containing active nanoreservoirs. Small 3, 926–943 (2007)Google Scholar
  69. 69.
    Skorbab, E.V., Andreeva, D.V.: Layer-by-layer approaches for formation of smart self-healing materials. Polym. Chem. 4, 4834–4845 (2013)Google Scholar
  70. 70.
    Shchukin, D.G.: Container-based multifunctional self-healing polymer coatings. Polym. Chem. 4, 4871–4877 (2013)Google Scholar
  71. 71.
    De Geest, B.G., De Koker, S., Sukhorukov, G.B., Kreft, O., Parak, W.J., Skirtach, A.G., Demeester, J., De Smedt, S.C., Hennink, W.E.: Polyelectrolyte microcapsules for biomedical applications. Soft Matter 5, 282–291 (2009)Google Scholar
  72. 72.
    Koker, S.D., Cock, L.J.D., Rivera-Gil, P., Parak, W.J., Velty, R.A., Vervaet, C., Remon, J.P., Grooten, J., Geest, B.G.D.: Polymeric multilayer capsules delivering biotherapeutics. Adv. Drug Deliv. Rev. 63, 748–761 (2011)Google Scholar
  73. 73.
    Michel, M., Vautier, D., Voegel, J.-C., Schaaf, P., Ball, V.: Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles. Langmuir 20, 4835–4839 (2004)Google Scholar
  74. 74.
    Michel, R., Plostica, T., Abezgauz, L., Danino, D., Gradzielski, M.: Control of the stability and structure of liposomes by means of nanoparticles. Soft Matter 9, 4167–4177 (2013)Google Scholar
  75. 75.
    Michel, M., Arntz, Y., Fleith, G., Toquant, J., Haikel, Y., Voegel, J.-C., Schaaf, P., Ball, V.: Layer-by-layer self-assembled polyelectrolyte multilayers with embedded liposomes: immobilized submicronic reactors for mineralization. Langmuir 22, 2358–2364 (2006)Google Scholar
  76. 76.
    Hosta-Rigau, L., Städler, B., Yan, Y., Nice, E.C., Heath, J.K., Albericio, F., Caruso, F.: Capsosomes with multilayered subcompartments: assembly and loading with hydrophobic cargo. Adv. Funct. Mat. 20, 59–66 (2010)Google Scholar
  77. 77.
    Hosta-Rigau, L., Chung, S.F., Postma, A., Chandrawati, R., Städler, B., Caruso, F.: Capsosomes with “free-floating” liposomal subcompartments. Adv. Mat. 23, 4082–4087 (2011)Google Scholar
  78. 78.
    Chandrawati, R., Caruso, F.: Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 28, 13798–13807 (2012)Google Scholar
  79. 79.
    Ejima, H., Richardson, J.J., Liang, K., Best, J.P., van Koeverden, M.P., Such, G.K., Cui, J., Caruso, F.: One-step assembly of coordination complexes for versatile film and particle engineerinh. Science 341, 154–158 (2013)Google Scholar
  80. 80.
    Guzmán, E., Ritacco, H., Rubio, J.E.F., Rubio, R.G., Ortega, F.: Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammoniumchloride) and poly(4-styrene sulfonate of sodium). Soft Matter 5, 2130–2142 (2009)Google Scholar
  81. 81.
    Dubas, S.T., Schlenoff, J.B.: Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32, 8153–8160 (1999)Google Scholar
  82. 82.
    Iturri Ramos, J.J., Stahl, S., Richter, R.P., Moya, S.E.: Water content and buildup of poly(diallyl-dimethylammonium chloride)/poly(sodium 4-styrenesulfonate) and poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) polyelectrolyte multilayers studied by an in situ combination of a quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry. Macromolecules 43, 9063–9070 (2010)Google Scholar
  83. 83.
    Ladam, G., Schaad, P., Voegel, J.C., Schaaf, P., Decher, G., Cuisinier, F.: In situ determination of the structural properties of initially deposited polyelectrolyte multilayers. Langmuir 16, 1249–1255 (1999)Google Scholar
  84. 84.
    Boudou, T., Crouzier, T., Ren, K., Blin, G., Picart, C.: Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv. Mater. 22, 441–467 (2010)Google Scholar
  85. 85.
    Crouzier, T., Boudou, T., Picart, C.: Polysaccharide-based polyelectrolyte multilayers. Curr. Opin. Colloid Interface Sci. 15, 417–426 (2010)Google Scholar
  86. 86.
    Almodóvar, J., Mower, J., Banerjee, A., Sarkar, A.K., Ehrhart, N.P., Kipper, M.J.: Chitosan-heparin polyelectrolyte multilayers on cortical bone: Periosteum-mimetic, cytophilic, antibacterial coatings. Biotech. Bioeng. 110, 609–618 (2013)Google Scholar
  87. 87.
    Picart, C., Lavalle, P., Hubert, P., Cuisinier, F.J.G., Decher, G., Schaaf, P., Voegel, J.C.: Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17, 7414–7424 (2001)Google Scholar
  88. 88.
    Richert, L., Lavalle, P., Payan, E., Shu, X.Z., Prestwich, G.D., Stoltz, J.-F., Schaaf, P., Voegel, J.-C., Picart, C.: Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir 20, 448–458 (2004)Google Scholar
  89. 89.
    Hammond, P.T.: Engineering materials layer-by-layer: challenges and opportunities in multilayer assembly. AIChE J. 57, 2928–2940 (2011)Google Scholar
  90. 90.
    Schmitt, J., Griinewald, T., Decher, G., Pershan, P.S., Pershan, K., Losche, M.: Internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and x-ray reflectivity study. Macromolecules 26, 7058–7063 (1993)Google Scholar
  91. 91.
    Lösche, M., Schmitt, J., Decher, G., Bouwman, W.G., Kjaer, K.: Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules 31, 8893–8906 (1998)Google Scholar
  92. 92.
    Schönhoff, M., Ball, V., Bausch, A.R., Dejugnat, C., Delorme, N., Glinel, K., von Klitzing, R., Steitz, R.: Hydration and internal properties of polyelectrolyte multilayers. Colloids Surf. A 303, 14–29 (2007)Google Scholar
  93. 93.
    Schlenoff, J.B., Ly, H., Li, M.: Charge and mass balance in polyelectrolyte multilayers. J. Am. Chem. Soc. 120, 7626–7634 (1998)Google Scholar
  94. 94.
    Farhat, T., Yassin, G., Dubas, S.T., Schlenoff, J.B.: Water and ion pairing in polyelectrolyte multilayers. Langmuir 15, 6621–6623 (1999)Google Scholar
  95. 95.
    Schlenoff, J.B., Dubas, S.T.: Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules 34, 592–598 (2001)Google Scholar
  96. 96.
    Guzmán, E., Miguel, V.S., Peinado, C., Ortega, F., Rubio, R.G.: Polyelectrolyte multilayers containing triblock copolymers of different charge ratio. Langmuir 26, 11494–11502 (2010)Google Scholar
  97. 97.
    Guzmán, E., Ortega, F., Baghdadli, N., Cazeneuve, C., Luengo, G.S., Rubio, R.G.: Adsorption of conditioning polymers on solid substrates with different charge density. ACS Appl. Mat. Interfaces 3, 3181–3188 (2011)Google Scholar
  98. 98.
    Glinel, K., Moussa, A., Jonas, A.M., Laschewsky, A.: Influence of polyelectrolyte charge density on the formation of multilayers of strong polyelectrolytes at low ionic strength. Langmuir 18, 1408–1412 (2002)Google Scholar
  99. 99.
    Guzmán, E., Ritacco, H.A., Ortega, F., Rubio, R.G.: Growth of polyelectrolyte layers formed by poly(4-styrenesulfonate sodium salt) and two different polycations: new insights from study of adsorption kinetics. J. Phys. Chem. C 116, 15474–15483 (2012)Google Scholar
  100. 100.
    Guzmán, E., Cavallo, J.A., Chuliá-Jordán, R., Gómez, C., Strumia, M.C., Ortega, F., Rubio, R.G.: pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system. Langmuir 27, 6836–6845 (2011)Google Scholar
  101. 101.
    Bieker, P., Schönhoff, M.: Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules 43, 5052–5059 (2010)Google Scholar
  102. 102.
    Salomaki, M., Vinokurov, I.A., Kankare, J.: Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir 21, 11232–11240 (2005)Google Scholar
  103. 103.
    von Klitzing, R.: Internal structure of polyelectrolyte multilayer assemblies. Phys. Chem. Chem. Phys. 8, 5012–5033 (2006)Google Scholar
  104. 104.
    Grosberg, A.Y., Nguyen, T.T., Shklovskii, B.I.: Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329–345 (2002)Google Scholar
  105. 105.
    Schwarz, S., Eichhorn, K.J., Wischerhoff, E., Laschewsky, A.: Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements. Colloids Surf. A 159, 491–501 (1999)Google Scholar
  106. 106.
    Picart, C., Sengupta, K., Schilling, J., Maurstad, G., Ladam, G., Bausch, A.R., Sackmann, E.: Microinterferometric study of the structure, interfacial potential, and viscoelastic properties of polyelectrolyte multilayer films on a planar substrate. J. Phys. Chem. B 108, 7196–7205 (2004)Google Scholar
  107. 107.
    Wang, Q.: Internal structure and charge compensation of polyelectrolyte multilayers: a numerical study. Soft Matter 5, 413–424 (2009)Google Scholar
  108. 108.
    Kharlampieva, E., Kozlovskaya, V., Ankner, J.F., Sukhishvili, S.A.: Hydrogen-bonded polymer multilayers probed by neutron reflectivity. Langmuir 24, 11346–11349 (2008)Google Scholar
  109. 109.
    Guzmán, E., Chuliá-Jordán, R., Ortega, F., Rubio, R.G.: Influence of the percentage of acetylation on the assembly of LBL multilayers of poly(acrylic acid) and chitosan. Phys. Chem. Chem. Phys. 13, 18200–18207 (2011)Google Scholar
  110. 110.
    Cerda, J.J., Qiao, B., Holm, C.: Understanding polyelectrolyte multilayers: an open challenge for simulations. Soft Matter 5, 4412–4425 (2009)Google Scholar
  111. 111.
    Ghostine, R.A., Markarian, M.Z., Schlenoff, J.B.: Asymmetric growth in polyelectrolyte multilayers. J. Am. Chem. Soc. 135, 7636–7646 (2013)Google Scholar
  112. 112.
    Lehaf, A.M., Hariri, H.H., Schlenoff, J.B.: Homogeneity, modulus, and viscoelasticity of polyelectrolyte multilayers by nanoindentation: refining the buildup mechanism. Langmuir 28, 6348–6355 (2012)Google Scholar
  113. 113.
    Ghostine, R.A., Jisr, R.M., Lehaf, A., Schlenoff, J.B.: Roughness and salt annealing in a polyelectrolyte multilayer. Langmuir 29, 11742–11750 (2013)Google Scholar
  114. 114.
    Kotov, N.A.: Layer-by-layer self-assembly: the contribution of hydrophobic interactions. Nanostruct. Mater. 12, 789–796 (1999)Google Scholar
  115. 115.
    Guzmán, E., Ortega, F., Prolongo, M.G., Starov, V.M., Rubio, R.G.: Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers. Phys. Chem. Chem. Phys. 13, 16416–16423 (2011)Google Scholar
  116. 116.
    Guzmán, E., Ortega, F., Baghdadli, N., Luengo, G.S., Rubio, R.G.: Effect of the molecular structure on the adsorption of conditioning polyelectrolytes on solid substrates. Colloids Surf. A 375, 209–218 (2011)Google Scholar
  117. 117.
    Messina, R., Holm, C., Kremer, K.: Polyelectrolyte multilayering on a charged sphere. Langmuir 19, 4473–4482 (2003)Google Scholar
  118. 118.
    Lvov, Y., Yamada, S., Kunitake, T.: Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion. Thin Solid Films 300, 107–112 (1997)Google Scholar
  119. 119.
    Guzmán, E., Ritacco, H., Ortega, F., Rubio, R.G.: Evidence of the influence of adsorption kinetics on the internal reorganization of polyelectrolyte multilayers. Colloids Surf. A 384, 274–281 (2011)Google Scholar
  120. 120.
    Schönhoff, M., Schwarz, B., Larsson, A., Kuckling, D.: Dynamics in polymer layers investigated by NMR techniques. Progr. Colloid Polym. Sci. 121, 80–87 (2002)Google Scholar
  121. 121.
    Picart, C., Mutterer, J., Richert, L., Luo, Y., Prestwich, G.D., Schaaf, P., Voegel, J.-C., Lavalle, P.: Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc. Nat. Acad. Sci. USA 99, 12531–12535 (2002)Google Scholar
  122. 122.
    Gamboa, D., Priolo, M.A., Ham, A., Grunlan, J.: Note: influence of rinsing and drying routines on growth of multilayer thin films using automated deposition system. Rev. Sci. Inst. 81, 036103 (2010)Google Scholar
  123. 123.
    Wohl, B.M., Engbersen, J.F.J.: Responsive layer-by-layer materials for drug delivery. J. Controlled Release 158, 2–14 (2012)Google Scholar
  124. 124.
    Izquierdo, A., Ono, S.S., Voegel, J.C., Schaaf, P., Decher, G.: Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21, 7558–7567 (2005)Google Scholar
  125. 125.
    Michel, M., Izquierdo, A., Decher, G., Voegel, J.C., Schaaf, P., Ball, V.: Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles obtained by spraying: integrity of the vesicles. Langmuir 21, 7854–7859 (2005)Google Scholar
  126. 126.
    Kolansinska, M., Krastev, R., Gutberlet, T., Warszynski, P.: Layer-by-layer deposition of polyelectrolytes. Dipping versus spraying. Langmuir 25, 1224–1232 (2009)Google Scholar
  127. 127.
    Lee, S.-S., Hong, J.-D., Kim, C.H., Kim, K., Koo, J.P., Lee, K.-B.: Layer-by-layer deposited multilayer assemblies of ionene-type polyelectrolytes based on the spin-coating method. Macromolecules 34, 5358–5360 (2001)Google Scholar
  128. 128.
    Chiarelli, P.A., Johal, M.S., Holmes, D.J., Casson, J.L., Robinson, J.M., Wang, H.-L.: Polyelectrolyte spin-assembly. Langmuir 18, 168–173 (2002)Google Scholar
  129. 129.
    Kiel, M., Mitzscherling, S., Leitenberger, W., Santer, S., Tiersch, B., Sievers, T.K., Möhwald, H., Bargheer, M.: Structural characterization of a spin-assisted colloid-polyelectrolyte assembly: stratified multilayer thin films. Langmuir 26, 18499–18502 (2010)Google Scholar
  130. 130.
    Cho, J., Char, K., Hong, J.-D., Lee, K.-B.: Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mat. 13, 1076–1078 (2001)Google Scholar
  131. 131.
    Kharlampieva, E., Kozlovskaya, V., Chan, J., Ankner, J.F., Tsukruk, V.V.: Spin-assisted layer-by-layer assembly: variation of stratification as studied with neutron reflectivity. Langmuir 25, 14017–14024 (2009)Google Scholar
  132. 132.
    Schlenoff, J.B., Dubas, S.T., Farhat, T.: Sprayed polyelectrolyte multilayers. Langmuir 16, 9968–9969 (2000)Google Scholar
  133. 133.
    Lefort, M., Boulmedais, F., Jierry, L., Gonthier, E., Voegel, J.C., Hemmerl, J., Lavalle, P., Ponche, A., Schaaf, P.: Simultaneous spray coating of interacting species: general rules governing the poly(styrene sulfonate)/poly(allylamine) system. Langmuir 27, 4653–4660 (2011)Google Scholar
  134. 134.
    Schaaf, P., Voegel, J.-C., Jierry, L., Boulmedais, F.: Spray-assisted polyelectrolyte multilayer buildup: from step-by-step to single-step polyelectrolyte film constructions. Adv. Mat. 24, 1001–1016 (2012)Google Scholar
  135. 135.
    Shchukina, E.M., Shchukin, D.G.: LbL coated microcapsules for delivering lipid-based drugs. Adv. Drug Deliv. Rev. 63, 837–846 (2011)Google Scholar
  136. 136.
    Arys, X., Jonas, A.M., Laguitton, B., Legras, R., Laschewsky, A., Wischerhoff, E.: Structural studies on thin organic coatings built by repeated adsorption of polyelectrolytes. Prog. Organic Coatings 34, 108–118 (1998)Google Scholar
  137. 137.
    Caruso, F., Caruso, R.A., Möhwald, H.: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 5391–5394 (1998)Google Scholar
  138. 138.
    Peyratout, C.S., Dähne, L.: Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew. Chem. Int. Ed. 43, 3762–3783 (2004)Google Scholar
  139. 139.
    Ruano M, Ritacco H, Rubio RG, Ortega F (2011) Layer-by-layer assembly of polyelectrolytes onto fluid micro-interfaces: polyelectrolyte-coated liposomes. Abs Pap the Am Chem Soc 239:28-COLLGoogle Scholar
  140. 140.
    Cuomo, F., Lopez, F., Ceglie, A., Maiuro, L., Miguel, M.G., Lindman, B.: pH-responsive liposome-templated polyelectrolyte nanocapsules. Soft Matter 8, 4415–4420 (2012)Google Scholar
  141. 141.
    Cini, N., Tulun, T., Decher, G., Ball, V.: Step-by-step assembly of self-patterning polyelectrolyte films violating (almost) all rules of layer-by-layer deposition. J. Am. Chem. Soc. 132, 8264–8265 (2010)Google Scholar
  142. 142.
    Johansson, E., Blomberg, E., Lingstrom, R., Wägberg, L.: Adhesive interaction between polyelectrolyte multilayers of polyallylamine hydrochloride and polyacrylic acid studied using atomic force microscopy and surface force apparatus. Langmuir 25, 2887–2894 (2009)Google Scholar
  143. 143.
    Salomakki, M., Kankare, J.: Influence of synthetic polyelectrolytes on the growth and properties of hyaluronan-chitosan multilayers. Biomacromolecules 10, 294–301 (2009)Google Scholar
  144. 144.
    Xu, L., Kozlovskaya, V., Kharlampieva, E., Ankner, J.F., Sukhishvili, S.A.: Anisotropic diffusion of polyelectrolyte chains within multilayer films. ACS Macro Lett. 1, 127–130 (2012)Google Scholar
  145. 145.
    Ferreyra, N.F., Rivas, G.A.: Self-assembled multilayers of polyethylenimine and DNA: spectrophotometric and electrochemical characterization and application for the determination of acridine orange interaction. Electroanalysis 21, 1665–1671 (2009)Google Scholar
  146. 146.
    Ji, J., Tan, Q., Shen, J.: Construction of albumin multilayer coating onto plasma treated poly(vinyl chloride) via electrostatic self-assembly. Polym. Adv. Technol. 15, 490–494 (2004)Google Scholar
  147. 147.
    Yang, Y.-H., Haile, M., Park, Y.T., Malek, F.A., Grunlan, J.C.: Super gas barrier of all-polymer multilayer thin films. Macromolecules 44, 1450–1459 (2011)Google Scholar
  148. 148.
    Gu, C.-H., Wang, J.-J., Yu, Y., Sun, H., Shuai, N., Wei, B.: Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid). Carbohydr. Polym. 92, 1579–1585 (2013)Google Scholar
  149. 149.
    Yuan, W., Dong, H., Li, C.M., Cui, X., Yu, L., Lud, Z., Zhou, Q.: pH-controlled construction of chitosan/alginate multilayer film: characterization and application for antibody immobilization. Langmuir 23, 13046–13052 (2007)Google Scholar
  150. 150.
    Jourdainne, L., Sn, Lecuyer, Arntz, Y., Picart, C., Schaaf, P., Senger, B., Voegel, J.-C., Lavalle, P., Charitat, T.: Dynamics of poly(l-lysine) in hyaluronic acid/poly(l-lysine) multilayer films studied by fluorescence recovery after pattern photobleaching. Langmuir 24, 7842–7847 (2008)Google Scholar
  151. 151.
    Lavalle, P., Gergely, C., Cuisinier, F.J.G., Decher, G., Schaaf, P., Voegel, J.C., Picart, C.: Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: an in situ atomic force microscopy study. Macromolecules 35, 4458–4465 (2002)Google Scholar
  152. 152.
    Lavalle, P., Picart, C., Mutterer, Jr, Gergely, C., Reiss, H., Voegel, J.-C., Senger, B., Schaaf, P.: Modeling the buildup of polyelectrolyte multilayer films having exponential growth. J. Phys. Chem. B 108, 635–648 (2003)Google Scholar
  153. 153.
    Itoh, K., Tokumi, S., Kimura, T., Nagase, A.: Reinvestigation on the buildup mechanism of alternate multilayers consisting of poly(l-glutamic acid) and poly(l-, d-, and dl-lysines). Langmuir 24, 13426–13433 (2008)Google Scholar
  154. 154.
    Song, Z., Yin, J., Luo, K., Zheng, Y., Yang, Y., Li, Q., Yan, S., Chen, X.: Layer-by-layer buildup of poly(l-glutamic acid)/chitosan film for biologically active coating. Macromol. Biosci. 9, 268–278 (2009)Google Scholar
  155. 155.
    Barrantes, A., Santos, O., Sotres, J., Arnebrant, T.: Influence of pH on the build-up of poly-L-lysine/heparin multilayers. J. Colloid Interface Sci. 388, 191–200 (2012)Google Scholar
  156. 156.
    Yuan, W., Fu, J., Su, K., Ji, J.: Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids Surf. B 76, 549–555 (2010)Google Scholar
  157. 157.
    Schneider, A., Richert, L., Francius, G., Voegel, J.-C., Picart, C.: Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films. Biomed. Mater. 2, S45–S51 (2007)Google Scholar
  158. 158.
    Hoda, N., Larson, R.G.: Modeling the buildup of exponentially growing polyelectrolyte multilayer films. J. Phys. Chem. B 113, 4232–4241 (2009)Google Scholar
  159. 159.
    Porcel, C., Lavalle, P., Ball, V., Decher, G., Senger, B., Voegel, J.-C., Schaaf, P.: From exponential to linear growth in polyelectrolyte multilayers. Langmuir 22, 4376–4383 (2006)Google Scholar
  160. 160.
    Kujawa, P., Moraille, P., Sanchez, J., Badia, A., Winnik, F.: Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: a surface plasmon resonance spectroscopy and atomic force microscopy investigation. J. Am. Chem. Soc. 127, 9224–9234 (2005)Google Scholar
  161. 161.
    Lavalle, P., Vr, Vivet, Jessel, N., Decher, G., Voegel, J.-C., Mesini, P.J., Schaaf, P.: Direct evidence for vertical diffusion and exchange processes of polyanions and polycations in polyelectrolyte multilayer films. Macromolecules 37, 1159–1162 (2004)Google Scholar
  162. 162.
    Haynie, D.T., Cho, E., Waduge, P.: “In and out diffusion” hypothesis of exponential multilayer film buildup revisited. Langmuir 27, 5700–5704 (2011)Google Scholar
  163. 163.
    Cini, N., Tulun, T., Blanck, C., Toniazzo, V., Ruch, D., Decher, G., Ball, V.: Slow complexation dynamics between linear short polyphosphates and polyallylamines: analogies with ‘‘layer-by-layer’’ depositsw. Phys. Chem. Chem. Phys. 14, 3048–3056 (2012)Google Scholar
  164. 164.
    Xu, L., Pristinski, D., Zhuk, A., Stoddart, C., Ankner, J.F., Sukhishvili, S.A.: Linear versus exponential growth of weak polyelectrolyte multilayers: correlation with polyelectrolyte complexes. Macromolecules 45, 3892–3901 (2012)Google Scholar
  165. 165.
    Holmberg, K., Jönsson, B., Kronberg, B., Lindman, B.: Surfactants and Polymers in Aqueous Solution. Wiley, Chichester (2002)Google Scholar
  166. 166.
    Cohen-Stuart, M.A.: Kinetics of polyelectrolyte adsorption. J. Phys. Cond. Matt. 9, 7767–7783 (1997)Google Scholar
  167. 167.
    Lane, T.J., Fletcher, W.R., Gormally, M.V., Johal, M.S.: Dual-beam polarization interferometry resolves mechanistic aspects of polyelectrolyte adsorption. Langmuir 24, 10633–10636 (2008)Google Scholar
  168. 168.
    Raposo, M., Oliveira, O.N.: Adsorption mechanisms in layer-by-layer films. Braz. J. Phys. 28, 392–404 (1998)Google Scholar
  169. 169.
    Raposo, M., Pontes, R.S., Mattoso, L.H.C., Oliveira, O.N.: Kinetics of adsorption of poly(o-methoxyaniline) self-assembled films. Macromolecules 30, 6095–6101 (1997)Google Scholar
  170. 170.
    Chiang, C.Y., Starov, V.M., Hall, M.S., Lloyd, D.R.: Crystallization kinetics of polymer-solvent systems: 2. experimental verification of the model. Colloid J. 59, 236–247 (1997)Google Scholar
  171. 171.
    Chiang, C.-Y., Starov, V.M., Lloyd, D.R.: Crystallization kinetics of a polymersolvent system. 1. Derivation of model-equations. Colloid J. 57, 715–724 (1995)Google Scholar
  172. 172.
    Bertrand, P., Jonas, A., Laschewsky, A., Legras, R.: Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun. 21, 319–348 (2000)Google Scholar
  173. 173.
    Linse, P., Källrot, N.: Polymer adsorption from bulk solution onto planar surfaces: effect of polymer flexibility and surface attraction in good solvent. Macromolecules 43(4), 2054–2068 (2010)Google Scholar
  174. 174.
    Burke, S.E., Barrett, C.J.: Swelling behavior of hyaluronic acid/polyallylamine hydrochloride multilayer films. Biomacromolecules 6, 1419–1428 (2005)Google Scholar
  175. 175.
    von Klitzing, R., Wong, J.E., Jaeger, W., Steitz, R.: Short range interactions in polyelectrolyte multilayers. Curr. Opin. Colloid Interface Sci. 9, 158–162 (2004)Google Scholar
  176. 176.
    Lvov, Y., Ariga, K., Onda, M., Ichinose, I., Kunitake, T.: A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids Surf. A 146, 337–346 (1999)Google Scholar
  177. 177.
    Okubo, T., Suda, M.: Absorption of polyelectrolytes on colloidal surfaces as studied by electrophoretic and dynamic light-scattering techniques. J. Colloid Interf. Sci. 213, 565–571 (1999)Google Scholar
  178. 178.
    Shen, L., Chaudouet, P., Ji, J., Picart, C.: pH-amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability. Biomacromolecules 12, 1322–1331 (2011)Google Scholar
  179. 179.
    Garg, A., Heflin, J.R., Gibson, H.W., Davis, R.M.: Study of film structure and adsorption kinetics of polyelectrolyte multilayer films: effect of pH and polymer concentration. Langmuir 24, 10887–10894 (2008)Google Scholar
  180. 180.
    Dobrynin, A.V., Rubinstein, M.: Theory of polyelectrolytes in solutions and at interfaces. Progr. Polym. Sci. 30, 1049–1118 (2005)Google Scholar
  181. 181.
    Kamineni, V.K., Lvov, Y.M., Dobbins, T.A.: Layer-by-layer nanoassembly of polyelectrolytes using formamide as the working medium. Langmuir 23, 7423–7427 (2007)Google Scholar
  182. 182.
    Tuo, X., Chen, D., Cheng, H., Wang, X.: Fabricating water-insoluble polyelectrolyte into multilayers with layer-by-layer self-assembly. Polym. Bull. 54, 427–433 (2005)Google Scholar
  183. 183.
    Long, Y., Wang, T., Liu, L., Liu, G., Zhang, G.: Ion specificity at a low salt concentration in water–methanol mixtures exemplified by a growth of polyelectrolyte multilayer. Langmuir 29, 3645–3653 (2013)Google Scholar
  184. 184.
    Buron, C.C., Filiâtre, C., Membrey, F., Bainier, C., Buisson, L., Charraut, D., Foissy, A.: Surface morphology and thickness of a multilayer film composed of strong and weak polyelectrolytes: effect of the number of adsorbed layers, concentration and type of salts. Thin Solid Films 517, 2611–2617 (2009)Google Scholar
  185. 185.
    Dubas, S.T., Schlenoff, J.B.: Polyelectrolyte multilayers containing a weak polyacid: construction and deconstruction. Macromolecules 34, 3736–3740 (2001)Google Scholar
  186. 186.
    Record, M.T., Guinn, E., Pegram, L., Capp, M.: Introductory lecture: interpreting and predicting hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Disc 160, 9–44 (2013)Google Scholar
  187. 187.
    Leontidis, E.: Hofmeister anion effects on surfactant self-assembly and the formation of porous solids. Curr. Opin. Colloid Interface Sci. 7, 81–91 (2002)Google Scholar
  188. 188.
    Salomaki, M., Laiho, T., Kankare, J.: Counteranion-controlled properties of polyelectrolyte multilayers. Macromolecules 37, 9585–9590 (2004)Google Scholar
  189. 189.
    Salomäki, M., Tervasmäki, P., Areva, S., Kankare, J.: The hofmeister anion effect and the growth of polyelectrolyte multilayers. Langmuir 20, 3679–3683 (2004)Google Scholar
  190. 190.
    Dressick, W.J., Wahl, K.J., Bassim, N.D., Stroud, R.M., Petrovykh, D.Y.: Divalent–anion salt effects in polyelectrolyte multilayer depositions. Langmuir 28, 15831–15843 (2012)Google Scholar
  191. 191.
    Brunner, E., Lutz, K., Sumper, M.: Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution. Phys. Chem. Chem. Phys. 6, 854–857 (2004)Google Scholar
  192. 192.
    Llamas, S., Mendoza, A.J., Guzman, E., Ortega, F., Rubio, R.G.: Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior. J. Colloid Interface Sci. 400, 49–58 (2013)Google Scholar
  193. 193.
    Panchagnula, V., Jeon, J., Dobrynin, A.V.: Molecular dynamics simulations of electrostatic layer-by-layer self assembly. Phys. Rev. Lett. 93, 037801 (2004)Google Scholar
  194. 194.
    Félix, O., Zheng, Z., Cousin, F., Decher, G.: Are sprayed LbL-films stratified? a first assessment of the nanostructure of spray-assembled multilayers by neutron reflectometry. C. R. Chim. 12, 225–234 (2009)Google Scholar
  195. 195.
    Silva, H.S., Uehara, T.M., Bergamaski, K., Miranda, P.B.: Molecular ordering in layer- by-layer polyelectrolyte films studied by sum- frequency vibrational spectroscopy: the effects of drying process. J. Nanosci. Nanotechnol. 8, 3399–3405 (2008)Google Scholar
  196. 196.
    Silva, H.S., Miranda, P.B.: Molecular ordering of layer-by-layer polyelectrolyte films studied by sum-frequency vibrational spectroscopy. J. Phys. Chem. B 113, 10068–10071 (2009)Google Scholar
  197. 197.
    Korneev, D., Lvov, Y., Decher, G., Schmitt, J., Yaradaikin, S.: Neutron reflectivity analysis of self assembled film superlattices with alternate layers of deuterated and hydrogenated polysterenesulfonate and polyallylamine. Phys. B 213, 954–956 (1995)Google Scholar
  198. 198.
    Soltwedel, O., Ivanova, O., Nestler, P., Müler, M., Köhler, R., Helm, C.A.: Interdiffusion in polyelectrolyte multilayers. Macromolecules 43, 7288–7293 (2010)Google Scholar
  199. 199.
    Jomaa, H.W., Schlenoff, J.B.: Salt-induced polyelectrolyte interdiffusion in multilayered films: a neutron reflectivity study. Macromolecules 38, 8473–8480 (2005)Google Scholar
  200. 200.
    Gilbert, J.B., Rubner, M.F., Cohen, R.E.: Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers. Proc. Nat. Acad. Sci. USA 110, 6651–6656 (2013)Google Scholar
  201. 201.
    Singh, S., Junghans, A., Waltman, M.J., Nagy, A., Iyer, R., Majewski, J.: Neutron reflectometry characterization of PEI–PSS polyelectrolyte multilayers for cell culture. Soft Matter 8, 11484–11491 (2012)Google Scholar
  202. 202.
    Wong, J.E., Zastrow, H., Jaeger, W., von Klitzing, R.: Specific ion versus electrostatic effects on the construction of polyelectrolyte multilayers. Langmuir 25, 14061–14070 (2009)Google Scholar
  203. 203.
    Schönhoff, M.: Layered polyelectrolyte complexes: physics of formation and molecular properties. J. Phys. Cond. Matt. 15, R1781–R1808 (2003)Google Scholar
  204. 204.
    Schönhoff, M.: Self-assembled polyelectrolyte multilayers. Curr. Opin. Colloid Interface Sci. 8, 86–95 (2003)Google Scholar
  205. 205.
    Schwarz, B., Schönhoff, M.: A 1H NMR relaxation study of hydration water in polyelectrolyte mono and multilayers adsorbed to colloidal particles. Colloids Surf. A 198, 293–304 (2002)Google Scholar
  206. 206.
    Carriere, D., Krastev, R., Schonhoff, M.: Oscillations in solvent fraction of polyelectrolyte multilayers driven by the charge of the terminating layer. Langmuir 20, 11465–11472 (2004)Google Scholar
  207. 207.
    Tanchak, O.M., Yager, K.G., Fritzsche, H., Harroun, T., Katsaras, J., Barret, C.J.: Water distribution in multilayers of weak polyelectrolytes. Langmuir 22, 5137–5143 (2006)Google Scholar
  208. 208.
    Dodoo, S., Steitz, R., Laschewsky, A., von Klitzing, R.: Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 13, 10318–10325 (2011)Google Scholar
  209. 209.
    Dodoo, S., Balzer, B.N., Hugel, T., Laschewsky, A., von Klitzing, R.: Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour. Soft Materials 11, 157–164 (2013)Google Scholar
  210. 210.
    Dubas, S.T., Schlenoff, J.B.: Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir 17, 7725–7727 (2001)Google Scholar
  211. 211.
    Schneider, A., Francius, G., Obeid, R., Schwinté, P., Hemmerlé, J., Frisch, B., Schaaf, P., Voegel, J.-C., Senger, B., Picart, C.: Polyelectrolyte multilayers with a tunable young’s modulus: influence of film stiffness on cell adhesion. Langmuir 22, 1193–1200 (2006)Google Scholar
  212. 212.
    Lehaf, A.M., Hariri, H.H., Schlenoff, J.B.: Homogeneity, modulus, and viscoelasticity of polyelectrolyte multilayers by nanoindentation: refining the buildup mechanism. Langmuir 28, 6348–6355 (2012)Google Scholar
  213. 213.
    Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford (1999)Google Scholar
  214. 214.
    Nolte, A.J., Rubner, M.F., Cohen, R.E.: Determining the young’s modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities. Macromolecules 38, 5367–5370 (2005)Google Scholar
  215. 215.
    Jaber, J.A., Schlenoff, J.B.: Mechanical properties of reversibly cross-linked ultrathin polyelectrolyte complexes. J. Am. Chem. Soc. 128, 2940–2947 (2006)Google Scholar
  216. 216.
    Nolte, A.J., Treat, N.D., Cohen, R.E., Rubner, M.F.: Effect of relative humidity on the young’s modulus of polyelectrolyte multilayer films and related nonionic polymers. Langmuir 41, 5793–5798 (2008)Google Scholar
  217. 217.
    Blacklock, J., Vetter, A., Lankenau, A., Oupický, D., Möhwald, H.: Tuning the mechanical properties of bioreducible multilayer films for improved cell adhesion and transfection activity. Biomaterials 31, 7167–7174 (2010)Google Scholar
  218. 218.
    Lehaf, A.M., Moussallem, M.D., Schlenoff, J.B.: Correlating the compliance and permeability of photo-cross-linked polyelectrolyte multilayers. Langmuir 27, 4756–4763 (2011)Google Scholar
  219. 219.
    Antipov, A.A., Sukhorukov, G.B., Leporatti, S., Radtchenko, I.L., Donath, E., Mohwald, H.: Polyelectrolyte multilayer capsule permeability control. Colloids Surf. A 198–200, 535–541 (2002)Google Scholar
  220. 220.
    Delcea, M., Möhwald, H., Skirtach, A.G.: Stimuli-responsive LBL capsules and nanoshells for drug delivery. Adv. Drug. Delivery Rev. 63, 730–747 (2011)Google Scholar
  221. 221.
    Köhler, K., Sukhorukov, G.B.: Heat treatment of polyelectrolyte multilayer capsules:aversatile method for encapsulation. Adv. Funct. Mater. 17, 2053–2061 (2007)Google Scholar
  222. 222.
    Mjahed, H., Voegel, J.-C., Senger, B., Chassepot, A., Rameau, A., Ball, V., Schaaf, P., Boulmedais, F.: Hole formation induced by ionic strength increase in exponentially growing multilayer films. Soft Matter 5, 2269–2276 (2009)Google Scholar
  223. 223.
    Skirtach, A.G., Kreft, O., Villiers, M.M., Aramwit, P., Kwon, G.S.: Stimuli-sensitive nanotechnology for drug delivery. Nanotechnology in Drug Delivery. In: Villiers, M.M., Aramwit, P., Kwon, G.S. (eds.), pp. 545–578. Springer, New York (2009)Google Scholar
  224. 224.
    Chong, S.-F., Sexton, A., De Rose, R., Kent, S.J., Zelikin, A.N., Caruso, F.: A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. Biomaterials 30, 5178–5186 (2009)Google Scholar
  225. 225.
    Glinel, K., Déjugnat, C., Prevot, M., Schoeler, B., Schönhoff, M., von Klitzing, R.: Responsive polyelectrolyte multilayers. Colloids Surf. A 303, 3–13 (2007)Google Scholar
  226. 226.
    Dubas, S.T., Farhat, T.R., Schlenoff, J.B.: Multiple membranes from “true” polyelectrolyte multilayers. J. Am. Chem. Soc. 123, 5368–5369 (2001)Google Scholar
  227. 227.
    Bruening, M.L., Dotzauer, D.M., Jain, P., Ouyang, L., Baker, G.L.: Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24, 7663–7673 (2008)Google Scholar
  228. 228.
    Guzman, E., Ruano, M., Rubio, R.G., Ortega, F.: Polyelectrolyte assemblies for drug storage and delivery: Multilayers, nanocapsules, and multicapsules. In: Prokopovich, P. (ed.) Inhaler Devices: Fundamentals, Design and Drug Delivery, pp. 94–145. Woodhead Publishing Limited, Sawston (2013)Google Scholar
  229. 229.
    Koker, S.D., Hoogenboom, R., Geest, B.G.D.: Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev. 41, 2867–2884 (2012)Google Scholar
  230. 230.
    Städler, B., Chandrawati, R., Price, A.D., Chong, S.-F., Breheney, K., Postma, A., Connal, L.A., Zelikin, A.N., Caruso, F.: A microreactor with thousands of subcompartments: enzyme-loaded liposomes within polymer capsules. Angew. Chem. Int. Ed. 48, 4359–4362 (2009)Google Scholar
  231. 231.
    Städler, B., Chandrawati, R., Goldie, K., Caruso, F.: Capsosomes: subcompartmentalizing polyelectrolyte capsules using liposomes. Langmuir 25, 6725–6732 (2009)Google Scholar
  232. 232.
    Rmaile, H.H., Schlenoff, J.B.: Optically active polyelectrolyte multilayers as membranes for chiral separations. J. Am. Chem. Soc. 125, 6602–6603 (2003)Google Scholar
  233. 233.
    Lutkenhaus, J.L., McEnnis, K., Hammond, P.T.: Tuning the glass transition of and ion transport within hydrogen-bonded layer-by-layer assemblies. Macromolecules 40, 8367–8373 (2007)Google Scholar
  234. 234.
    Daiko, Y., Katagiri, K., Matsuda, A.: Proton conduction in thickness-controlled ultrathin polycation/nafion multilayers prepared via layer-by-layer assembly. Chem. Mater. 20, 6405–6409 (2008)Google Scholar
  235. 235.
    Reisch, A., Hemmerlé, J., Chassepot, A., Lefort, M., Benkirane-Jessel, N., Candolfi, E., Mésini, P., Letscher-Bru, V., Voegel, J.-C., Schaaf, P.: Anti-fouling phosphorylcholine bearing polyelectrolyte multilayers: cell adhesion resistance at rest and under stretching. Soft Matter 6, 1503–1512 (2010)Google Scholar
  236. 236.
    Shchukin, D.G., Zheludkevich, M., Yasakau, K., Lamaka, S., Ferreira, M.G.S., Möhwald, H.: Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 18, 1672–1678 (2006)Google Scholar
  237. 237.
    Wang, X., Liu, F., Zheng, X., Sun, J.: Water-enabled self-healing of polyelectrolyte multilayer coatings. Angew. Chem. Int. Ed. 50, 11378–11381 (2011)Google Scholar
  238. 238.
    Andreeva, D.V., Skorb, E.V., Shchukin, D.G.: Layer-by-layer polyelectrolyte/inhibitor nanostructures for metal corrosion protection. ACS Appl. Mater Interfaces 2, 1954–1962 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eduardo Guzmán
    • 1
    • 2
    Email author
  • Marta Ruano
    • 2
  • Francisco Ortega
    • 2
  • Ramón G. Rubio
    • 2
  1. 1.Istituto per l’Energetica e le Interfasi (IENI), U.O.S. GenovaConsiglio Nazionale delle Ricerche (CNR)GenoaItaly
  2. 2.Departamento de Química Física I, Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations