Complexes Formation Between Proteins and Polyelectrolytes and Their Application in the Downstream Processes of Enzyme Purification

  • Guillermo Alfredo PicóEmail author
  • Nadia Woitovich Valetti
Part of the Engineering Materials book series (ENG.MAT.)


Natural and synthetic polyelectrolytes have acquired notable importance in recent years due to their increasing application in different areas. One of these is downstream process methods which include the recovery, separation, concentration and purification of target enzymes from their natural sources. Polyelectrolytes interact with proteins to form soluble or non-soluble complexes. The interaction is driven by experimental variables of media such as pH, protein isoelectrical value, polyelectrolyte pKa, ionic strength and the presence of salts. The concentration of polyelectrolytes necessary to precipitate a protein completely is of the order of 10-4 – 10-2 % p/v. Precipitation of protein by PE is a novel technique integrating clarification, concentration and initial purification in a single step. This chapter presents some properties of aqueous solutions of natural and synthetic PE as a tool to use them in the protein downstream process.


Isothermal Titration Calorimetry Target Enzyme Negative Electrical Charge Turbidimetric Titration Opposite Electrical Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Polyelectrolytes complex


Polyelectrolytes-protein complexes






Poly (acrylic acid)


Poly (vinylsulfonic acid)







This work was supported by a grant from CONICET PIP00196. We thank María Robson, Geraldine Raimundo, Mariana De Sanctis and Marcela Culasso for the language correction of the manuscript.


  1. 1.
    Thünemann, A., et al.: Polyelectrolyte complexes. In: Schmidt, M. (ed.) Polyelectrolytes with Defined Molecular Architecture II. Springer Berlin Heidelberg. pp. 113–171 (2004)Google Scholar
  2. 2.
    Quinteros, D.A., et al.: Interaction between a cationic polymethacrylate (Eudragit E100) and anionic drugs. Eur. J. Pharm. Sci. 33(1), 72–79 (2008)CrossRefGoogle Scholar
  3. 3.
    Renault, F., et al.: Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur. Polym. J. 45(5), 1337–1348 (2009)CrossRefGoogle Scholar
  4. 4.
    Bouyer, E., et al.: Stabilization mechanism of oil-in-water emulsions by β-lactoglobulin and gum arabic. J. Colloid Interface Sci. 354(2), 467–477 (2011)CrossRefGoogle Scholar
  5. 5.
    Cooper, C.L., et al.: Polyelectrolyte–protein complexes. Curr. Opin. Colloid Interface Sci. 10(1–2), 52–78 (2005)CrossRefGoogle Scholar
  6. 6.
    Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)CrossRefGoogle Scholar
  7. 7.
    Schillemans, J.P., Hennink, W.E., van Nostrum, C.F.: The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels. Eur. J. Pharm. Biopharm. 76(3), 329–335 (2010)CrossRefGoogle Scholar
  8. 8.
    Bassani, G., Farruggia, B., Picó, G.: Cationic polyelectrolytes–lipases complexes formation as tool for recovery of these enzymes from their natural sources. Int. J. Biol. Macromol. 49(3), 351–355 (2011)CrossRefGoogle Scholar
  9. 9.
    Liao, Y.-H., Brown, M.B., Martin, G.P.: Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations. Eur. J. Pharm. Biopharm. 58(1), 15–24 (2004)CrossRefGoogle Scholar
  10. 10.
    Simonoska Crcarevska, M., Glavas Dodov, M., Goracinova, K.: Chitosan coated Ca-alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur. J. Pharm. Biopharm. 68(3), 565–578 (2008)CrossRefGoogle Scholar
  11. 11.
    Roy, I., Sardar, M., Gupta, M.N.: Cross-linked alginate–guar gum beads as fluidized bed affinity media for purification of Jacalin. Biochem. Eng. J. 23(3), 193–198 (2005)CrossRefGoogle Scholar
  12. 12.
    Radoiu, M.T., et al.: Preparation of polyelectrolytes for wastewater treatment. J. Hazard. Mater. 106(1), 27–37 (2004)CrossRefGoogle Scholar
  13. 13.
    Eremenko, A., et al.: Monomolecular enzyme films stabilized by amphiphilic polyelectrolytes for biosensor devices. Thin Solid Films 260(2), 212–216 (1995)CrossRefGoogle Scholar
  14. 14.
    Dyrby, M., et al.: Towards on-line monitoring of the composition of commercial carrageenan powders. Carbohydr. Polym. 57(3), 337–348 (2004)CrossRefGoogle Scholar
  15. 15.
    Kadajji, V.G., Betageri, G.V.: Water soluble polymers for pharmaceutical applications. Polymers 3(4), 1972–2009 (2011)CrossRefGoogle Scholar
  16. 16.
    Rinaudo, M.: Polyelectrolyte properties of a plant and animal polysaccharide. Struct. Chem. 20(2), 277–289 (2009)CrossRefGoogle Scholar
  17. 17.
    Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions II. self-diffusion of the small ions. J. Chem. Phys. 51(3), 934–938 (1969)CrossRefGoogle Scholar
  18. 18.
    Lifson, S., Katchalsky, A.: The electrostatic free energy of polyelectrolyte solutions. II. Fully stretched macromolecules. J. Polym. Sci. 13(68), 43–55 (1954)CrossRefGoogle Scholar
  19. 19.
    Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions I. colligative properties. J. Chem. Phys. 51(3), 924–933 (1969)CrossRefGoogle Scholar
  20. 20.
    Dobrynin, A.V., Rubinstein, M.: Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30(11), 1049–1118 (2005)CrossRefGoogle Scholar
  21. 21.
    Klooster, N.T.M., Van der Touw, F., Mandel, M.: Solvent effects in polyelectrolyte solutions. 1. Potentiometric and viscosimetric titration of poly(acrylic acid) in methanol and counterion specificity. Macromolecules 17(10), 2070–2078 (1984)CrossRefGoogle Scholar
  22. 22.
    Boeris, V., Farruggia, B., Pico, G.: Chitosan-bovine serum albumin complex formation: a model to design an enzyme isolation method by polyelectrolyte precipitation. J Chromatogr. B Analyt. Technol. Biomed. Life Sci 878(19), 1543–1548 (2010)CrossRefGoogle Scholar
  23. 23.
    Simsek-Ege, F.A., Bond, G.M., Stringer, J.: Polyelectrolyte complex formation between alginate and chitosan as a function of pH. J. Appl. Polym. Sci. 88(2), 346–351 (2003)CrossRefGoogle Scholar
  24. 24.
    Cleland, R.L.: Theory of potentiometric titration of polyelectrolytes: a discrete-site model for hyaluronic acid. Macromolecules 17(4), 634–645 (1984)CrossRefGoogle Scholar
  25. 25.
    Turgeon, S.L., Schmitt, C., Sanchez, C.: Protein–polysaccharide complexes and coacervates. Curr. Opin. Colloid Interface Sci. 12(4–5), 166–178 (2007)CrossRefGoogle Scholar
  26. 26.
    Chen, J., Heitmann, J.A., Hubbe, M.A.: Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids Surf., A 223(1–3), 215–230 (2003)CrossRefGoogle Scholar
  27. 27.
    Kovačević, D., Borković, S., Požar, J.: The influence of ionic strength, electrolyte type and preparation procedure on formation of weak polyelectrolyte complexes. Colloids Surf., A 302(1–3), 107–112 (2007)Google Scholar
  28. 28.
    Moustafine, R.I., Kemenova, V.A., Van den Mooter, G.: Characteristics of interpolyelectrolyte complexes of Eudragit E 100 with sodium alginate. Int. J. Pharm. 294(1–2), 113–120 (2005)CrossRefGoogle Scholar
  29. 29.
    Shang, J., Shao, Z., Chen, X.: Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9(4), 1208–1213 (2008)CrossRefGoogle Scholar
  30. 30.
    Rosca, C., et al.: Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan–carboxymethylcellulose complex. Carbohydr. Polym. 62(1), 35–41 (2005)CrossRefGoogle Scholar
  31. 31.
    Chavasit, V., Torres, J.A.: Chitosan-Poly(acrylic acid): mechanism of complex formation and potential industrial applications. Biotechnol. Prog. 6(1), 2–6 (1990)CrossRefGoogle Scholar
  32. 32.
    Delair, T.: Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur. J. Pharm. Biopharm. 78(1), 10–18 (2011)CrossRefGoogle Scholar
  33. 33.
    Sankalia, M.G., et al.: Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index. Int. J. Pharm. 312(1–2), 1–14 (2006)CrossRefGoogle Scholar
  34. 34.
    Calvo, P., Vila-Jato, J.L., Alonso, MaJ: Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 153(1), 41–50 (1997)CrossRefGoogle Scholar
  35. 35.
    Lankalapalli, S., Kolapalli, V.R.: Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J. Pharm. Sci. 71(5), 481–487 (2009)CrossRefGoogle Scholar
  36. 36.
    Moustafine, R.I., et al.: Comparative evaluation of interpolyelectrolyte complexes of chitosan with Eudragit L100 and Eudragit L100-55 as potential carriers for oral controlled drug delivery. Eur. J. Pharm. Biopharm. 70(1), 215–225 (2008)CrossRefGoogle Scholar
  37. 37.
    Izumrudov, V., Galaev, I., Mattiasson, B.: Polycomplexes—potential for bioseparation. Bioseparation 7(4–5), 207–220 (1998)CrossRefGoogle Scholar
  38. 38.
    Valetti, N.W., Boeris, V., Picó, G.: Characterization of chymotrypsin–ι − carrageenan complex in aqueous solution: a solubility and thermodynamical stability study. Int. J. Biol. Macromol. 52, 45−51 (2013)Google Scholar
  39. 39.
    Valetti, N., et al.: Precipitation of chymotrypsin from fresh bovine pancreas using i−carrageenan. Proc. Biochem. 47(12), 2570−2574 (2012)Google Scholar
  40. 40.
    Boeris, V., et al.: Purification of chymotrypsin from bovine pancreas using precipitation with a strong anionic polyelectrolyte. Proc. Biochem. 44(5), 588–592 (2009)CrossRefGoogle Scholar
  41. 41.
    Perez, A.A., et al.: Interactions between milk whey protein and polysaccharide in solution. Food Chem. 116(1), 104–113 (2009)CrossRefGoogle Scholar
  42. 42.
    Tolstoguzov, V.: Some thermodynamic considerations in food formulation. Food Hydrocolloids 17(1), 1–23 (2003)CrossRefGoogle Scholar
  43. 43.
    Xu, Z., et al.: Co-immobilization mechanism of Cellulase and Xylanase on a reversibly soluble polymer. Appl. Biochem. Biotechnol. 163(1), 153–161 (2011)CrossRefGoogle Scholar
  44. 44.
    Breccia, J.D., Mattiasson, B., Siñeriz, F.: Separation of bacterial Xylanase by precipitation using Eudragit S100. J. Biotechnol. 61(3), 219–223 (1998)CrossRefGoogle Scholar
  45. 45.
    Cappella, L.V., Boeris, V., Picó, G.: A simple method of chymotrypsin concentration and purification from pancreas homogenate using Eudragit® L100 and Eudragit® S100. J. Chromatogr. B 879(13–14), 1003–1007 (2011)CrossRefGoogle Scholar
  46. 46.
    Dubin, P.L., Gao, J., Mattison, K.: Protein purification by selective phase separation with polyelectrolytes. Sep. Purif. Rev. 23(1), 1–16 (1994)CrossRefGoogle Scholar
  47. 47.
    Schmitt, C., Turgeon, S.L.: Protein/polysaccharide complexes and coacervates in food systems. Adv. Colloid Interface Sci. 167(1–2), 63–70 (2011)CrossRefGoogle Scholar
  48. 48.
    Pico, G., et al.: Calorimetric investigation of the protein-flexible chain polymer interactions and its relationship with protein partition in aqueous two-phase systems. Int. J. Biol. Macromol. 40(3), 268–275 (2007)CrossRefGoogle Scholar
  49. 49.
    Cooper, C.L., et al.: Effects of polyelectrolyte chain stiffness, charge mobility, and charge sequences on binding to proteins and micelles. Biomacromolecules 7(4), 1025–1035 (2006)CrossRefGoogle Scholar
  50. 50.
    Boeris, V., et al.: Interaction and complex formation between catalase and cationic polyelectrolytes: Chitosan and Eudragit E100. Int. J. Biol. Macromol. 45(2), 103–108 (2009)CrossRefGoogle Scholar
  51. 51.
    Porfiri, M.C., et al.: Precipitation with poly acrylic acid as a trypsin bioseparation strategy. Process Biochem. 44(9), 1046–1049 (2009)CrossRefGoogle Scholar
  52. 52.
    Harnsilawat, T., Pongsawatmanit, R., McClements, D.J.: Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids 20(5), 577–585 (2006)CrossRefGoogle Scholar
  53. 53.
    Romanini, D., et al.: Interaction of lysozyme with negatively charged flexible chain polymers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 857(1), 25–31 (2007)CrossRefGoogle Scholar
  54. 54.
    Boeris, V., et al.: Chymotrypsin—Eudragit® complex mechanism formation as potential non expensive tool to isolate this enzyme at scale up level. Biotechnology and Bioprocess Engineering (in press) (2013)Google Scholar
  55. 55.
    Mazzaferro, L., et al.: Polyethyleneimine–protein interactions and implications on protein stability. Int. J. Biol. Macromol. 47(1), 15–20 (2010)CrossRefGoogle Scholar
  56. 56.
    Boeris, V., et al.: Protein-flexible chain polymer interactions to explain protein partition in aqueous two-phase systems and the protein–polyelectrolyte complex formation. Int. J. Biol. Macromol. 41(3), 286–294 (2007)CrossRefGoogle Scholar
  57. 57.
    Weinbreck, F., et al.: Complex coacervation of whey proteins and gum arabic. Biomacromolecules 4(2), 293–303 (2003)CrossRefGoogle Scholar
  58. 58.
    Mattison, K.W., Brittain, I.J., Dubin, P.L.: Protein—polyelectrolyte phase boundaries. Biotechnol. Prog. 11(6), 632–637 (1995)CrossRefGoogle Scholar
  59. 59.
    Mattison, K.W., Dubin, P.L., Brittain, I.J.: Complex formation between Bovine Serum Albumin and Strong polyelectrolytes: effect of polymer charge density. J. Phys. Chem. B 102(19), 3830–3836 (1998)CrossRefGoogle Scholar
  60. 60.
    Boeris, V., et al.: Chymotrypsin–poly vinyl sulfonate interaction studied by dynamic light scattering and turbidimetric approaches. Biochimica. et Biophysica. Acta (BBA)—General subjects,. 1780(9):pp. 1032–1037 (2008)Google Scholar
  61. 61.
    Boeris, V., et al.: Chymotrypsin—Eudragit® complex formation. Biotechnol. Bioprocess Eng. 18(3), 538–545 (2013)CrossRefGoogle Scholar
  62. 62.
    Azarmi, S., et al.: Thermal treating as a tool for sustained release of indomethacin from Eudragit RS and RL matrices. Int. J. Pharm. 246(1–2), 171–177 (2002)CrossRefGoogle Scholar
  63. 63.
    Tsuboi, A., et al.: Complexation of proteins with a strong polyanion in an aqueous salt-free system. Langmuir 12(26), 6295–6303 (1996)CrossRefGoogle Scholar
  64. 64.
    Patrickios, C.S., et al.: Precipitation of a water-soluble ABC Triblock methacrylic polyampholyte: effects of time, pH, polymer concentration, salt type and concentration, and presence of a protein. Langmuir 15(5), 1613–1620 (1999)CrossRefGoogle Scholar
  65. 65.
    Nath, S., Patrickios, C.S., Hatton, T.A.: Turbidimetric titration study of the interaction of proteins with acrylic polyampholytes. Biotechnol. Prog. 11(1), 99–103 (1995)CrossRefGoogle Scholar
  66. 66.
    Manzur, A., et al.: Polyethyleneimine phosphate and citrate systems act like pseudo polyampholytes as a starting method to isolate pepsin. J. Chromatogr. B 860(1), 63–68 (2007)CrossRefGoogle Scholar
  67. 67.
    Valetti, N.W., Boeris, V., Picó, G.: Characterization of chymotrypsin–ι-carrageenan complex in aqueous solution: a solubility and thermodynamical stability study. Int. J. Biol. Macromol. 52, 45–51 (2013)CrossRefGoogle Scholar
  68. 68.
    Porfiri, M.C., Farruggia, B.M., Romanini, D.: Bioseparation of alpha-amylase by forming insoluble complexes with polyacrylate from a culture of Aspergillus Oryzae grown in agricultural wastes. Sep. Purif. Technol. 92, 11–16 (2012)CrossRefGoogle Scholar
  69. 69.
    Marini, A., et al.: Extraction of lipase from Aspergillus niger by insoluble complex formation with anionic and cationic polyelectrolytes. Process Biochem. 47(12), 2234–2239 (2012)CrossRefGoogle Scholar
  70. 70.
    Sumner, J.B.: The isolation and crystallization of the enzyme urease: preliminary paper. J. Biol. Chem. 69(2), 435–441 (1926)Google Scholar
  71. 71.
    Montilla, A., et al.: Isolation of bovine β-lactoglobulin from complexes with Chitosan. Int. Dairy J. 17(5), 459–464 (2007)CrossRefGoogle Scholar
  72. 72.
    Snoke R.E., et al. Purification of microbial enzyme extracts using synthetic polyelectrolytes. US Patent 4,055,469. 1977Google Scholar
  73. 73.
    Luong, J. et al.: Affinity process for trypsin purification and stabilization. US Patent 4,973,554. 1990Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guillermo Alfredo Picó
    • 1
    • 2
    Email author
  • Nadia Woitovich Valetti
    • 2
  1. 1.National Scientific and Technical Research CouncilBuenos AiresArgentina
  2. 2.Biotechnological Process Laboratory, Faculty of Biochemical and Pharmaceutical SciencesNational University of RosarioRosarioArgentina

Personalised recommendations