Advertisement

Thermodynamic and Rheological Properties of Polyelectrolyte Systems

  • Ruben H. ManzoEmail author
  • Alvaro F. Jimenez-Kairuz
  • María E. Olivera
  • Fabiana Alovero
  • María V. Ramirez-Rigo
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The chapter provides a treatment of the interaction between acidic or basic polyelctrolytes (PE) and ionizable organic molecules (selected model drugs) in aqueous environments, in terms of acid-base reactions. The electrostatic attraction between the ionized pending groups of the PE and the organic ions yields a high proportion of counterionic condensation with affinity constants in the range of 103 to 105. The high proportion of counterionic condensation in PE-drug aqueous dispersions determines many of the particular properties of these systems such as the effects of addition of electrolytes and non-electrolytes, the kinetic of drug release under different conditions, the raise of compatibility of low solubility drugs, the increase of chemical stability and the rheological behavior. The aqueous systems of acidic PE are characterized by their building viscosity capacity. Flow curves of PE-drug systems reflex the behavior of model PE-Na systems. However, complexes of a set of model drugs under similar conditions exhibit a wide range of viscosities. The determination of the kinetic of water sorption of PE-drug complexes in solid state provides valuable complementary information related to their swelling capacity. Rheology of PE-drug aqueous dispersions as well as their swelling capacity are relevant properties in the fields of mucoadhesivity and drug release.

Keywords

Shear Rate Alginic Acid Rheological Property Rheological Behavior Aqueous Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AA

Alginic acid

AA-Na

Sodium alginate

AH

Acidic organic molecule

AHst

Stoichiometric concentration of an acidic organic molecule

A

Dissociated species of an acidic organic molecule (*)

AH

Neutral species of an acidic organic molecule (*)

Bst

Stoichiometric concentration of a basic organic molecule

B

Neutral species of a basic organic molecule

BH+

Protonated species of a basic organic molecule (*)

C

Carbomer

C934

Carbomer 934 P

C–Na

Sodium carbomer

CMC-Na

Sodium carboxymethylcellulose

CMC-Na (LV)

Low viscosity sodium carboxymethylcellulose

CMC-Na (MV)

Medium viscosity sodium carboxymethylcellulose

CMC-Na (HV)

High viscosity sodium carboxymethylcellulose

c*

Critical concentration

DC

Diffusion coefficient

DCf

Fast mode of the diffusion coefficient

DCs

Slow mode of the diffusion coefficient

EE

Eudragit E 100

EL

Eudragit L-100

ES

Eudragit S-100

HA

Hyaluronic acid/hyaluronan

HA-Na

Sodium hyaluronate

[HCl]st

Stoichiometric concentration of hydrochloric acid

Kcc

Affinity constant for counterionic condensation

PE

Polyelectrolyte

RAH

Acidic pending groups of a polyelectrolyte

RAH

Undissociated fraction of the acidic pending groups of a polyelectrolyte (*)

RA

Dissociated fraction of the acidic pending groups of a polyelectrolyte (*)

[RABH+]

Counterionic condensed fraction between the dissociated acidic pending groups of a polyelectrolyte and a protonated basic organic molecule (*)

RNR1R2

Basic pending groups of a polyelectrolyte

RNR1R2

Non-protonated fraction of the amino pending groups of a basic polyelectrolyte (*)

RNR1R2H+

Protonated fraction of the amino pending groups of a basic polyelectrolyte (*)

[RNR1R2H+A]

Counterionic condensed fraction between the protonated basic pending groups of a polyelectrolyte and a dissociated acidic organic molecule (*)

(*)

italics denotate the dissociated or protonated species of a polyelectrolyte or a drug

Symbols

ζ

Electrokinetic potential

\( \dot{\gamma} \)

Shear rate

γ

Strain

τ

Shear stress

τ0

Yield stress fluid

η

Dynamic viscosity

Tg δ

Loss tangent

References

  1. 1.
    Dobrynin, A., Rubinstein, M.: Theory of polyelectrolytes in solution and at surfaces. Prog. Polym. Sci. 30, 1049–1118 (2005)CrossRefGoogle Scholar
  2. 2.
    Jimenez-kairuz, A.F., Ramírez Rigo, M.V., Quinteros, D., Vilches, A., Olivera, M.E., Alovero, F.L., Manzo, R.H.: Recent contributions on drug carrier systems based on polyelectrolytes. Part I: aqueous dispersions. Rev. Farm. Rev. 150, 11–25 (2008)Google Scholar
  3. 3.
    Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon Press, Oxford (1989)Google Scholar
  4. 4.
    de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY (1979)Google Scholar
  5. 5.
    Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)Google Scholar
  6. 6.
    Sedlák, M.: Structure and dynamics of polyelectrolyte solution by light scattering. In: Radeva, T. (ed.) Physical Chemistry of Polyelectrolytes, 99. Surfactant Science Series. Marcel Dekker, New York (2001)Google Scholar
  7. 7.
    Sedlák, M.: Mechanical properties and stability of multimacroion domains in polyelectrolyte solutions. J. Chem. Phys. 116(12), 5236–5245 (2002)CrossRefGoogle Scholar
  8. 8.
    Oosawa, F.: Polyelectrolytes. Marcel Dekker Inc., New York (1997)Google Scholar
  9. 9.
    Rabin, Y., Cohen, J., Priel, Z.: Viscosity of polyelectrolyte solutions—the generalized Fuoss law. J. Polym. Sci. Part C: Polym. Lett. 26, 397–399 (1988). doi: 10.1002/pol.1988.140260904 Google Scholar
  10. 10.
    Rowe, R.C., Sheskey, P.J., Quinn, M.E. (eds.): Handbook of Pharmaceutical Excipients, 6th edn. Pharmaceutical Press and American Pharmacists Association, USA (2003)Google Scholar
  11. 11.
    Jimenez-Kairuz, A., Allemandi, D., Manzo, R.H.: Mechanism of lidocaine release from carbomer-lidocaine hydrogels. J. Pharm. Sci. 91(1), 267–272 (2002)CrossRefGoogle Scholar
  12. 12.
    Jimenez-Kairuz, A.F., Allemandi, D.A., Manzo, R.H.: Equilibrium properties and mechanism of kinetic release of metoclopramide from carbomer hydrogels. Int. J. Pharm. 250(1), 129–136 (2003)CrossRefGoogle Scholar
  13. 13.
    Vilches, A.P., Jimenez-Kairuz, A., Alovero, F., Olivera, M.E., Allemandi, D.A., Manzo, R.H.: Release kinetics and up-take studies of model fluoroquinolones from carbomer hydrogels. Int. J. Pharm. 246(1–2), 17–24 (2002)CrossRefGoogle Scholar
  14. 14.
    Quinteros, D.A., Ramírez Rigo, M.V., Jimenez Kairuz, A.F., Olivera, M.E., Manzo, R.H., Allemandi, D.A.: Interaction between a cationic polymethacrylate (Eudragit E100) and anionic drugs. Eur. J. Pharm. Sci. 33(1), 72–79 (2008)CrossRefGoogle Scholar
  15. 15.
    Vilches, A.P.: Polielectrolitos solubles como portadores de farmacos ionizables, preparación y estudio de sus propiedades farmacotecnicas. M. Sc. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2003)Google Scholar
  16. 16.
    Jimenez-kairuz, A.F.: Investigación y desarrollo de nuevos materiales con potencial uso en tecnología farmacéutica para diseño de sistemas terapéuticos. Ph. D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2004)Google Scholar
  17. 17.
    Esteban, S.L.: Sistemas Poliméricos Portadores de Macrólidos. Diseño y Evaluación. M. Sc. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2007)Google Scholar
  18. 18.
    Quinteros, D.A.: Desarrollo de nuevas estrategias de formulación de fármacos mediante el acomplejamiento con polielectrolitos. Ph. D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2010)Google Scholar
  19. 19.
    Romero, V.L.: Evaluación de los efectos de polímeros aniónicos y catiónicos en el desempeño y la eficacia de agentes antimicrobianos Fluoroquinolónicos. Ph. D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2012)Google Scholar
  20. 20.
    Grant, D.W., Higuchi, T.: Ion Pairs and Solubility Behavior. Solubility Behavior of Organic Compounds, XXI. In: Techniques of Chemistry. Willey Interscience, New York (1990)Google Scholar
  21. 21.
    Drifford, M., Delsanti, M.: Polyelectrolyte solutions with multivalent added salts: stability, structure, and dynamics. In: Radeva, T. (ed.) Physical Chemistry of Polyelectrolytes, 99. Surfactant Science Series. Marcel Dekker, New York (2001)Google Scholar
  22. 22.
    Porasso, R.D., Benegas, J.C., Van den Hoop, M.A.G.T., Paoletti, S.: Chemical bonding of divalent counterions to linear polyelectrolytes: theoretical treatment within the counterion condensation theory. Phys. Chem. Chem. Phys. 3(6), 1057–1062 (2001)CrossRefGoogle Scholar
  23. 23.
    Benegas, J.C., Paoletti, S., Van Den Hoop, M.A.G.T.: Affinity interactions in counterion-polyelectrolyte systems: competition between different counterions. Macromol. Theory Simul. 8(1), 61–64 (1999)CrossRefGoogle Scholar
  24. 24.
    Ardusso, M., Manzo, R.H., Jimenez Kairuz, A.F.: Comparative study of three structurally related acid polyelectrolytes as carriers of basic drugs: Carbomer, Eudragit L-100 and S-200. Supramol. Chem. 22, 289–296 (2010)CrossRefGoogle Scholar
  25. 25.
    Ardusso, M.: Utilización de materiales portadores polielectrolito-fármaco (PE-F) en el desarrollo de sistemas de liberación de fármacos. Ph. D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2012)Google Scholar
  26. 26.
    Esteban, S., Manzo, R.H., Alovero, F.L.: Azithromycin loaded on hydrogels of carbomer: chemical stability and delivery properties. Int. J. Pharm. 366, 53–57 (2009)CrossRefGoogle Scholar
  27. 27.
    Quinteros, D.A., Allemandi, D.A., Manzo, R.H.: Equilibrium and release properties of aqueous dispersions of non-steroidal anti-inflammatory drugs complexed with polyelectrolyte Eudragit E 100. Sci. Pharm. 80(2), 487–496 (2012)CrossRefGoogle Scholar
  28. 28.
    Barnes, H.A.: A Handbook of Elementary Rheology. Cambrian Printers, Wales (2000)Google Scholar
  29. 29.
    Graessley, W.W.: Polymeric Liquids and Networks: Dynamics and Rheology. Taylor & Francis Group, New York (2008)Google Scholar
  30. 30.
    Nguyen, Q.D., Boger, D.V.: Measuring the flow properties of yield stress fluids. Annu. Rev. Fluid Mech. 24, 47–88 (1992)CrossRefGoogle Scholar
  31. 31.
    Hyuna, K., Wilhelmb, M., Kleinb, C.O., Choc, K.S., Namd, J.G., Ahnd, K.H., Leed, S.J., Ewoldte, R.H., McKinleyf, G.H.: A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36, 1697–1753 (2011)CrossRefGoogle Scholar
  32. 32.
    Goodrich Company, B.F.: Technical Literature: Carbopol, Noveon, Pemulen Resins Handbook (1995)Google Scholar
  33. 33.
    Al-Malah, K.: Rheological properties of carbomer dispersions. Ann. Trans. Nord. Rheol. Soc. 14, 1–9 (2006)Google Scholar
  34. 34.
    Gutowski, I.: The effect of pH and concentration on the rheology of carbopol gels. M. Sc. thesis, McGill University, Israel (2008)Google Scholar
  35. 35.
    Togrul, H., Arslan, N.: Production of carboxymethyl cellulose form sugar beet pulp cellulose and rheological behavior of carboxymethyl cellulose. Carbohydr. Polym. 54, 73–82 (2003)CrossRefGoogle Scholar
  36. 36.
    Khaled, B., Abdelbaki, B.: Rheological and electrokinetic properties of carboxymethylcellulose-water dispersions in the presence of salts. Int. J. Phys. Sci. 7(11), 1790–1798 (2012)Google Scholar
  37. 37.
    Junyi, M., Yanbin, L., Xiangling, Ch., Baotang, Z., Ji, Z.: Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloids 38, 119–128 (2014)CrossRefGoogle Scholar
  38. 38.
    Funami, T., Fang, Y., Noda, S., Ishihara, S., Nakauma, M., Draget, K., Nishinari, K., Phillips, G.: Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding. Food Hydrocolloids 23, 1746–1755 (2009)CrossRefGoogle Scholar
  39. 39.
    Krause, W., Bellomo, E., Colby, R.: Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules 2, 65–69 (2001)CrossRefGoogle Scholar
  40. 40.
    Rinaudo, M.: Rheological investigation on hyaluronan-fibrinogen interaction. Int. J. Biol. Macromol. 43, 444–450 (2008)CrossRefGoogle Scholar
  41. 41.
    Battistini, F.D, Olivera, M.E, Manzo, R.H.: Pharmacotherapeutic potential of ionic complexes Hyaluronan-Drug. Personal communication. 3rd Argentine Symposium of Nanomedicine. Buenos Aires, Argentina (2013)Google Scholar
  42. 42.
    Ramírez Rigo, M.V.: Preparación y estudio de sistemas portadores de fármacos. Ph. D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2006)Google Scholar
  43. 43.
    Kumar, S., Himmelstein, K.J.: Modification of in situ gelling behavior of carbopol solution by hydroxypropyl methylcellulose. J. Pharm. Sci. 84(3), 344–348 (1995)CrossRefGoogle Scholar
  44. 44.
    Barry, B.W., Meyer, M.C.: The rheological properties of carbopol gels I. Continuos shear and creep properties of carbopol gels. Int. J. Pharm. 2, 1–25 (1979)CrossRefGoogle Scholar
  45. 45.
    Jimenez-Kairuz, A.F., Llabot, J.M., Allemandi, D.A., Manzo, R.H.: Swellable drug-polyelectrolyte matrices (SDPM): characterization and delivery properties. Int. J. Pharm. 288(1), 87–99 (2005)CrossRefGoogle Scholar
  46. 46.
    Ramírez Rigo, M.V., Allemandi, D.A., Manzo, R.H.: Swellable drug-polyelectrolyte matrices (SDPM) of alginic acid: characterization and delivery properties. Int. J. Pharm. 322, 36–43 (2006)CrossRefGoogle Scholar
  47. 47.
    Ramírez Rigo, M.V., Allemandi, D.A., Manzo, R.H.: Swellable drug-polyelectrolyte matrices of drug-carboxymethylcellulose complexes. Characterization and delivery properties. Drug Delivery 16(2), 108–115 (2009)CrossRefGoogle Scholar
  48. 48.
    Caramella, C.M., Rossi, S., Bonferoni, M.C.: A rheological approach to explain the mucoadhesive behavior of polymer hydrogels. In: Mathiowitz, E., Chickering III, D., Lehr, C.-M. (eds.) Bioadhesive Drug Delivery Systems, pp. 25–65. Marcel Dekker Inc., New York (1999)CrossRefGoogle Scholar
  49. 49.
    Tamburic, S., Craig, D.Q.: The effects of ageing on the rheological, dielectric and mucoadhesive properties of poly(acrylic acid) gel systems. Pharm. Res. 13(2), 279–283 (1996)CrossRefGoogle Scholar
  50. 50.
    Romero, V., Manzo, R., Alovero, F.: Enhanced bacterial uptake and bactericidal properties of ofloxacin loaded on bioadhesive hydrogels against Pseudomonas aeruginosa. J. Chemother. 22, 328–334 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ruben H. Manzo
    • 1
    Email author
  • Alvaro F. Jimenez-Kairuz
    • 1
  • María E. Olivera
    • 1
  • Fabiana Alovero
    • 1
  • María V. Ramirez-Rigo
    • 2
  1. 1.Departamento de Farmacia, Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba (UNC), Unidad de Tecnología Farmacéutica (UNITEFA, CONICET-UNC), Ciudad Universitaria (5000)CórdobaArgentina
  2. 2.Planta Piloto de Ingeniería Química (PLAPIQUI, CONICET-Universidad Nacional del Sur)Bahía BlancaArgentina

Personalised recommendations