Advertisement

Biological Polyelectrolytes: Solutions, Gels, Intermolecular Complexes and Nanoparticles

  • H. B. BohidarEmail author
  • Kamla Rawat
Chapter
  • 1.4k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

In this chapter, a detailed discussion on the salient features of structures of biomolecules like proteins, carbohydrates and nucleic acids is presented. Intermolecular interactions leading to phase separation, coacervation and nanoparticle formation is discussed herein. Biomolecular solutions exist as gels, coacervates, dispersions and melts with each of these phases having its signature physico-chemical properties, which is discussed in this chapter. The discussions are supported by robust experimental data obtained from an array of methods like turbidimetry, elecrophoresis, viscosity, light scattering etc. The inevitablilty of the phenomenon of self-organization in biopolymers results in the generation of a variety of soft matter phases which do not, however, make it predictable. For instance, the associative aggregation is a process which remains obscure, as every protein aggregates in a different manner under different conditions. One known feature to the aggregation of proteins is the strong dependence upon pH, salt concentration and temperature. Beyond the influence of these factors and their effects on aggregation, the process is not well understood. An increase in protein usage in biomedical and pharmaceutical studies implicates protein aggregation in Alzheimer's, Parkinson's and other diseases, and have placed a growing importance upon understanding this behaviour in general. Comparison of the system to other protein-polyelectrolyte systems suggests that the preferential binding of the two could be a result of complexation of the two molecules which often lead to coacervation. Such association can even occur at pH greater than the isoelectric points (pI), when the net charge of protein is of the same sign as that of polyelectrolyte. Such binding though prevalent in nature is not well understood. In summary, a comprehensive account of biomolecular phase states and their inherent attributes are presented in this review.

Keywords

Zeta Potential Persistence Length Chitosan Nanoparticles Simulated Intestinal Fluid Chitosan Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are thankful to their collaborators Dr. Anita K. Verma, Dr. Biswaranjan Mohanty, Dr. Amarnath Gupta, Dr. S. Boral, Mr. Najmul Arfin, Ms. Mandeep Kaloti, Ms. Ananya Tiwari and Ms Sonal Bindal whose work is cited in this review extensively. Authors acknowledges Department of Science and Technology, Government of India for financial support. Authors are thankful AIRF of the University for providing access to instrumentation.

References

  1. 1.
    Anderson, J.L., Pino, V., Hagberg, E.C., Sheares, V.V., Armstrong, D.W.: Chem. Commun. 19, 2444–2445 (2003)Google Scholar
  2. 2.
    Archer, W.L.: Ind. Eng. Chem. Res. 30, 2292–2298 (1991)Google Scholar
  3. 3.
    Arfin, N., Bohidar, H.B.: Int. J. Biol. Macromol. 50, 759–767 (2012)Google Scholar
  4. 4.
    Arfin, N., Bohidar, H.B.: J. Phys. Chem. B 116, 13192–13199 (2012)Google Scholar
  5. 5.
    Armstrong, D.W., He, L., Liu, Y.S.: Anal. Chem. 71, 3873–3876 (1999)Google Scholar
  6. 6.
    Ascot, P.G., Ma, C., Wenner, J.R., Bloomfield, V.A.: Biopolymer 36, 345–364 (1995)Google Scholar
  7. 7.
    Behrends, R., Fuchs, K., Kaatze, U., Hayashi, Y., Feldman, Y.: J. Chem. Phys. 124, 144512-1–144512-8 (2006)Google Scholar
  8. 8.
    Benoit, H., Doty, P.: J. Phys. Chem. 57, 958–963 (1953)Google Scholar
  9. 9.
    Biswas, A., Shogren, R.L., Stevenson, D.G., Willett, I.L., Bhovvmik, P.K.: Carbohydr. Polym. 66, 546–550 (2006)Google Scholar
  10. 10.
    Biswas, A., Shogren, R.L., Willett, J.L.: Ind. Crops Prod. 30, 172–175 (2009)Google Scholar
  11. 11.
    Bonner, G., Klibanov, A.M.: Biotechnol. Bioeng. 68, 339–344 (2000)Google Scholar
  12. 12.
    Boral, S., Bohidar, H.B.: J. Phys. Chem. B 114, 12027–12035 (2010)Google Scholar
  13. 13.
    Boral, S., Bohidar, H.B.: J. Phys. Chem. B 116, 7113–7121 (2012)Google Scholar
  14. 14.
    Boral, S., Saxena, A., Bohidar, H.B.: J Phys. Chem. B 112, 3625–3632 (2008)Google Scholar
  15. 15.
    Brennecke, J.F., Maginn, E.J.: AIChE J. 47, 2384–2389 (2001)Google Scholar
  16. 16.
    Budavari, S. (ed.): Merck Index, vol. 742, 12th edn., p. 4388 (1996)Google Scholar
  17. 17.
    Bungenberg de Jong, G.: Chapter 3. In: Kruyt, H.R. (ed.) Colloid Science, vol. 2. Elsevier Academic Press, New York (1949)Google Scholar
  18. 18.
    Burgess, J.J.: Colloid Interface Sci. 140, 227–238 (1990)Google Scholar
  19. 19.
    Calvo, P., Rumunan-Lopez, C., Vila-Jato, J.L., Alonso, M.J.: J. Appl. Polym. Sci. 63, 125–132 (1997)Google Scholar
  20. 20.
    Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry, vol. 3. AH Freeman and Company, New York (1980)Google Scholar
  21. 21.
    Chandran, A., Ghoshdastidar, D., Senapati, S.: J. Am. Chem. Soc. 134, 20330–22033 (2012)Google Scholar
  22. 22.
    Cheng, N.S.: Ind. Eng. Chem. Res. 47, 3285–3288 (2008)Google Scholar
  23. 23.
    Cipelletti, L., Manley, S., Ball, R.C., Weitz, D.A.: Phys. Rev. Lett. 84, 2275–2278 (2000)Google Scholar
  24. 24.
    Clark, A.H., Richardson, R.K., Ross-Murphy, R.K., Stubbs, J.M.: Macromolecules 16, 1367–1374 (1983)Google Scholar
  25. 25.
    Dan, A., Ghosh, S., Moulik, S.P.: J. Phys. Chem. B 113, 8505–8513 (2009)Google Scholar
  26. 26.
    Dashnau, J.L., Nucci, N.V., Sharp, K.A., Vanderkooi, J.M.: J. Phys. Chem. B 110, 13670–13677 (2006)Google Scholar
  27. 27.
    Davis-Searles, P.R., Saunders, A.J., Erie, D.A., Winzor, D.J., Pielak, G.: J. Ann. Rev. Biophys. Biomol. Struct. 30, 271–306 (2001)Google Scholar
  28. 28.
    Doi, M., Onuki, A.: J. Phys. II: France 2, 1631–1656 (1992)Google Scholar
  29. 29.
    Dumitriu, S., Chornet, E.: Adv. Drug Deliv. Rev. 31, 223–246 (1998)Google Scholar
  30. 30.
    Earle, M.J., Seddon, K.R.: Pure Appl. Chem. 72, 1391–1398 (2000)Google Scholar
  31. 31.
    Eastman, N.C., Rose, J.K.: Hydroxyethyl Cellulose in Water Soluble Resins [In: Davidson, R.L., Sittings, M. (eds.)], pp. 63–90. Reinhold, New York (1968)Google Scholar
  32. 32.
    Egorov, V.M., Smirnova, S.V., Formanovsky, A.A., Pletnev, I.V., Zolotov, Y.A.: Anal. Bioanal. Chem. 387, 2263–2269 (2007)Google Scholar
  33. 33.
    Eisenberg, H.: Acc. Chem. Res. 20, 276–282 (1987)Google Scholar
  34. 34.
    Erkselius, S., Karlsson, O.: J. Carbohydarate Polym. 62, 344–356 (2005)Google Scholar
  35. 35.
    Fendt, S., Padmanabhan, S., Blanch, H.W., Prausnitz, J.M.: J. Chem. Eng. Data 56, 31–34 (2011)Google Scholar
  36. 36.
    Ferrand, M., Djabourov, M., Coppola, M.: Macromol. Symp. 273, 56–65 (2008)Google Scholar
  37. 37.
    Fletcher, K.A., Pandey, S.: Langmuir 20, 33–36 (2004)Google Scholar
  38. 38.
    Forsyth, S.A., MacFarlane, D.R.: J. Mater. Chem. 13, 2451–2456 (2003)Google Scholar
  39. 39.
    Fort, D.A., Swatloski, R.P., Moyna, P., Rogers, R.D., Moyna, G.: Chem. Commun. 714–716 (2006)Google Scholar
  40. 40.
    Fukaya, Y., Hayashi, K., Wada, M., Ohno, H.: Green Chem. 10, 44–46 (2008)Google Scholar
  41. 41.
    Fukaya, Y., Sugimoto, A., Ohno, H.: Biomacromolecules 7, 3295–3297 (2006)Google Scholar
  42. 42.
    Geng, F., Zheng, L., Yu, L., Li, G., Tung, C.: Process Biochem. 45, 306–311 (2010)Google Scholar
  43. 43.
    Gomez, E., Gonzalez, B., Dominguez, A., Tojo, E., Tojo, J.: J. Chem. Eng. Data 519, 696–701 (2006)Google Scholar
  44. 44.
    Graenacher, C.U.S.: Patent 1(943), 176 (1934)Google Scholar
  45. 45.
    Gupta, A.N., Bohidar, H.B.: Biomacromolecules 6, 1623–1627 (2005)Google Scholar
  46. 46.
    Gupta, A.N., Bohidar, H.B.: J. Phys. Chem. B 111, 10137–10145 (2007)Google Scholar
  47. 47.
    Hammouda, B., Worcester, D.: Biophys. J. 91, 2237–2242 (2006)Google Scholar
  48. 48.
    Handy, S.T.: Chem. Eur. J. 9, 2938–2944 (2003)Google Scholar
  49. 49.
    Hayashi, Y., Puzenko, A., Balin, I., Ryabov, Y.E., Feldman, Y.: J. Phys. Chem. B 109, 9174–9177 (2005)Google Scholar
  50. 50.
    Heinze, T., Schwikal, K., Barthel, S.: Macromol. Biosci. 5, 520–525 (2005)Google Scholar
  51. 51.
    Hirota, M., Furihata, K., Saito, T., Kawada, K., Isogai, A.: Angew. Chem. Int. Ed. 49, 7670–7672 (2010)Google Scholar
  52. 52.
    Howe-Grant, M.E., Lippard, S.J.: Aqueous platinum (I1) chemistry: binding to biological molecules. In: Sigel, H. (ed.) Metal Ions in Biological Systems, vol. 11, pp. 63–125. Marcel Dekker, New York (1980)Google Scholar
  53. 53.
    Huggins, M.L.: J. Am. Chem. Soc. 64, 2716–2718 (1942)Google Scholar
  54. 54.
    Imai, T., Fujii, K., Shiraishi, S., Otagiri, M.: Alteration of pharmacokinetics and nephrotoxicity of Cisplatin by Alginates. J. Pharm. Sci. 86, 244–247 (1997)Google Scholar
  55. 55.
    Ishii, D., Saito, T., Isogai, A.: Biomacromolecules 12, 548–550 (2011)Google Scholar
  56. 56.
    Isogai, A., Saito, T., Fukuzumi, H.: Nanoscale 3, 71–85 (2011)Google Scholar
  57. 57.
    Jamieson, A.M., Simic-Glaveski, B., Tansey, K., Walton, A.G.: Faraday Discuss, Chem. Soc. 61, 194–204 (1976)Google Scholar
  58. 58.
    Kaibara, K., Okazaki, T., Bohidar, H.B., Dubin, P.L.: Biomacromolecules 1, 100–107 (2000)Google Scholar
  59. 59.
    Kaloti, M., Bohidar, H.B.: Colloids Surf. B 81, 165–173 (2010)Google Scholar
  60. 60.
    Kaloti, M., Saxena, A., Bohidar, H.B.: Int. J. Biol. Macromol. 48, 263 (2011)Google Scholar
  61. 61.
    Kaya, M., Toyama, Y., Kubota, K., Nodasaka, Y., Ochiai, M., Nomizu, M., Nishi, N.: Int. J. Biol. Macromol. 35, 39–46 (2005)Google Scholar
  62. 62.
    Kimizuka, N., Nakashima, T.: Langmuir 17, 6759–6761 (2001)Google Scholar
  63. 63.
    Kontogiorgos, V., Ritzoulis, C., Biliaderis, C.G., Kasapis, S.: Food Hydrocolloids 20, 749–756 (2006)Google Scholar
  64. 64.
    Kraemer, O.: Ind. Eng. Chem. 30, 1200–1203 (1938)Google Scholar
  65. 65.
    Lee, S.H., Dang, D.T., Ha, S.H., Chang, W.J., Koo, Y.M.: Biotechnol. Bioeng. 99, 1–8 (2008)Google Scholar
  66. 66.
    Legoff, J., Tanton, C., Lecerf, M., Grésenguet, G., Nzambi, K., Bouhlal, H., Weiss, H., Belec, L.: J. Virol. Methods 138, 196–200 (2006)Google Scholar
  67. 67.
    Liu, Q.B., Janssen, M.H.A., van Rantwijk, F., Sheldon, R.A.: Green Chem. 7, 39–42 (2005)Google Scholar
  68. 68.
    Lukin, M., de los Santos, C.: Chem. Rev. 106, 607–686 (2006)Google Scholar
  69. 69.
    Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392 (1986)Google Scholar
  70. 70.
    Micka, U., Kremer, K.: Europhys. Lett. 38, 279–284 (1997)Google Scholar
  71. 71.
    Mikkola, J.P., Kirilin, A., Tuuf, J.C., Pranovich, A., Holmbom, B., Kustov, L.M., Murzin, D.Y., Salmi, T.: Green Chem. 9, 1229–1237 (2007)Google Scholar
  72. 72.
    Mohanty, B., Aswal, V.K., Kohlbrecher, J., Bohidar, H.B.: J. Plym. Sci.: Part B 44, 1653–1667 (2006)Google Scholar
  73. 73.
    Mrevlishvili, G.M., Svintradze, D.V.: Int. J. Biol. Macromol. 35, 243–245 (2005)Google Scholar
  74. 74.
    Mudalige, A., Pemberton, J.E.: Vib. Spectrosc. 45, 27–35 (2007)Google Scholar
  75. 75.
    Nguyen, T.T., Shklovskii, B.I.: J. Chem. Phys. 115, 7298–7308 (2001)Google Scholar
  76. 76.
    Nordby, M.H., Kjoniksen, A.L., Nystrom, B., Roots, J.: Biomacromolecules 4, 337–343 (2003)Google Scholar
  77. 77.
    Norziah, M.H., Foo, S.L., Karim, A.A.: Food Hydrocolloids 20, 204–206 (2006)Google Scholar
  78. 78.
    Ohno, H., Fukaya, Y.: Chem. Lett. 38, 2–7 (2009)Google Scholar
  79. 79.
    Onuki, A., Taniguchi, T.: J Chem Phys. 106, 5761–5770 (1997)Google Scholar
  80. 80.
    Park, P., Kazlauskas, R.J.: J. Org. Chem. 66, 8395–8401 (2001)Google Scholar
  81. 81.
    Park, J.M., Muhoberac, B.B., Dubin, P.L., Xia, J.: Macromolecules 25, 290–295 (1992)Google Scholar
  82. 82.
    Pawar, N., Bohidar, H.B.: J. Polym. Sci., Part B: Phys. 48, 555–565 (2010)Google Scholar
  83. 83.
    Pezron, I., Djabourov, M., Bosio, L., Leblond, J.: J. Polym. Sci. Part B: Phys. 1990, 28 (1823)Google Scholar
  84. 84.
    Pezron, I., Djabourov, M., Leblond, J.: Polymer 32, 3201–3210 (1991)Google Scholar
  85. 85.
    Polson, J.M., Zuckerman, M.J.: J. Chem. Phys. 116, 7244–7254 (2002)Google Scholar
  86. 86.
    Rawat, K., Bohidar, H.B.: J. Mol. Liq. 169, 136–143 (2012)Google Scholar
  87. 87.
    Rawat, K., Bohidar, H.B.: J. Phys. Chem. B 116, 11065–11074 (2012)Google Scholar
  88. 88.
    Remsing, R.C., Swatloski, R.P., Rogers, R.D., Moyna, G.: Chem. Commun. 12, 1271–1273 (2006)Google Scholar
  89. 89.
    Roder, B., Fruhwirth, K., Vogl, C., Wagner, M., Rossmanith, P.: J. Clin. Microbiol. 48, 4260–4262 (2010)Google Scholar
  90. 90.
    Rolin, C., Nielsen, B.U., Glahn, P.E., Pectin, D.S. (eds.): Polysaccharides: Structural Diversity and Functional Versatility, pp. 377–431. Marcel Dekker, New York (1998)Google Scholar
  91. 91.
    Saito, T., Hirota, M., Tamura, N., Kimura, S., Fukuzumi, H., Huex, L., Isogai, A.: Biomacromolecules 10, 1992–1996 (2009)Google Scholar
  92. 92.
    Saito, T., Kimura, S., Nishiyama, Y., Isogai, A.: Biomacromolecules 8, 2485–2491 (2007)Google Scholar
  93. 93.
    Saito, T., Nalepa, D.E.: J. Appl. Polym. Sci. 22, 865–867 (1978)Google Scholar
  94. 94.
    Sanchez, C., Renard, D.: Int. J. Pharm. 242, 319–324 (2002)Google Scholar
  95. 95.
    Sanford, P.A., Hutchings, G.P.: Genetic Engineering: Structure-Property Relations and Applications. Elsevier, New York (1987)Google Scholar
  96. 96.
    Sanwalani, S., Bohidar, H.B.: J. Phys. Chem Biophys. 3, 100114-1–6 (2013)Google Scholar
  97. 97.
    Scherage, A., Mandelkern, L.: J. Am. Chem. Soc. 75, 179–184 (1953)Google Scholar
  98. 98.
    Seyrek, E., Dubin, P.L., Tribet, C., Gamble, E.A.: Biomacromolecules 4, 273–282 (2003)Google Scholar
  99. 99.
    Shankar, P.N., Kumar, M.: Proc. R. Soc. Lond. A 444, 573–581 (1994)Google Scholar
  100. 100.
    Singh, S.S., Aswal, V.K., Bohidar, H.B.: Int. J. Biomacromol. 41, 301–307 (2007)Google Scholar
  101. 101.
    Singh, T., Boral, S., Bohidar, H.B., Kumar, A.: J. Phys. Chem. B 114, 8441–8448 (2010)Google Scholar
  102. 102.
    Singh, S.S., Siddhanta, A.K., Meena, R., Prasad, K., Bandyopadhyay, S., Bohidar, H.B.: Int. J. Biol. Macromol. 41, 185–192 (2007)Google Scholar
  103. 103.
    Smith, A.E.: Nature 214, 1038–1040 (1967)Google Scholar
  104. 104.
    Streit, S., Sprung, M., Gutt, C., Tolan, M.: Phys. B 357, 110–114 (2005)Google Scholar
  105. 105.
    Tanford, C.: Physical Chemistry of Macromolecules. Wiley, New York (1961)Google Scholar
  106. 106.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: J. Am. Chem. Soc. 124, 4974--4975 (2002)Google Scholar
  107. 107.
    Tiwari, A., Bindal, S., Bohidar, H.B.: Biomacromolecules 10, 184–189 (2009)Google Scholar
  108. 108.
    Tokuda, H., Hayamizu, K., Ishii, K., Susan, Md.A.B.H, Watanabe, M.: J. Phys. Chem. B 109, 6103–6110 (2005)Google Scholar
  109. 109.
    Towey, J.J., Soper, A.K., Dougan, L.: J. Phys. Chem. B 115, 7799–7807 (2011)Google Scholar
  110. 110.
    Toyoda, N., Takenaka, M., Saito, S., Hashimoto, T.: Polymer 42, 9193–9203 (2001)Google Scholar
  111. 111.
    Tsuchida, E., Abe, K.: Intermacromolecular Complexes. Springer, Heidelberg (1982)Google Scholar
  112. 112.
    Turgeon, S.L., Schmitt, C., Sanchez, C.: Curr. Opin. Colloid Interface Sci. 12, 166–178 (2007)Google Scholar
  113. 113.
    Veis, A.: Macromolecular Chemistry of Gelatin. Academic Press, New York (1964)Google Scholar
  114. 114.
    Verma, A.K., Sachin, K.: Curr. Drug Deliv. 5, 120–126 (2008)Google Scholar
  115. 115.
    Vijayaraghavan, R., Izgorodin, A., Ganesh, V., Surianarayanan, M., MacFarlane, D.R.: Angew. Chem. Int. Ed. 49, 1631–1633 (2010)Google Scholar
  116. 116.
    Vitz, J., Erdmenger, T., Haensch, C., Schubert, U.S.: Green Chem. 11, 417–424 (2009)Google Scholar
  117. 117.
    Watase, M., Nishinari, K.: Rheol. Acta 19, 220–225 (1980)Google Scholar
  118. 118.
    Watson, J.D., Crick, F.H.C.: Nature 171, 737–738 (1953)Google Scholar
  119. 119.
    Welton, T.: Chem. Rev. 99, 2071–2083 (1999)Google Scholar
  120. 120.
    Wu, Y., Sasaki, T., Irie, S., Sakurai, K.: Polymer 49, 2321–2327 (2008)Google Scholar
  121. 121.
    Xie, H., Zhang, S., Li, S.: Green Chem. 8, 630–633 (2006)Google Scholar
  122. 122.
    Xu, Q., Kennedy, J.F., Liu, L.: Carbohydr. Polym. 72, 113–121 (2008)Google Scholar
  123. 123.
    Xu, Y., Mazzawi, M., Chen, K., Sun, L., Dubin, P.L.: Biomacromolecules 12, 1512–1522 (2011)Google Scholar
  124. 124.
    Yamazaki, S., Takegawa, A., Kaneko, Y., Kadokawa, J., Yamagata, M., Vlshikawa, : Electrochem. Commun. 11, 68–70 (2009)Google Scholar
  125. 125.
    Zech, O., Thomaier, S., Bauduin, P., Ruck, T., Touraud, D., Kunz, W.: J. Phys. Chem. B 113, 465–473 (2009)Google Scholar
  126. 126.
    Zhang, H., Oh, M., Allen, C., Kumacheva, E.: Biomacromolecules 5, 2461–2468 (2004)Google Scholar
  127. 127.
    Zhang, G., Wu, C.: Phys. Rev. Lett. 86, 822–825 (2001)Google Scholar
  128. 128.
    Zhang, H., Wu, J., Zhang, I., He, J.: Macromolecules 38, 8272–8277 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Special Center for Nanosciences, School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations