Polyelectrolytes: Science and Application

  • Emel Akyol
  • Semra Kirboga
  • Mualla ÖnerEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Polyelectrolytes, which are a macromolecule dissolved in water or polar solvent, have gained a wide attention among scientists and engineers for their wide application areas. Their different properties have allowed them to be used in many areas such as soap, body lotions, electrochromic devices, solid-state reference electrode systems, fuel cell exchange membranes, water treatment, waste treatment, paper production, corrosion protection, fuel cells, electrodialysis, contact lenses, membrane-based separations, drug delivery, and genetic science. Biocompatible polyelectrolytes are also utilized in biosensors and biomolecular recognition systems. Layer-by-layer (LbL) technique can be used to produce polyelectrolyte multilayer. Severe substrate such as gold, quartz, silicon, glass, plastic, stainless steel can be used in LbL technique. LbL technique is reproducible, cost-effective, and environmentally-friendly method. The characteristic properties of polyelectrolyte depend on the interaction between electrostatic forces. The degree of polymer charge can modify the electrostatic interactions. We examine the scaling theory according to Gennes et al. and Beurle and Nogovitsin in this chapter. After having discussed the scaling theory, we provide a basic introduction to properties of the neutron scattering and dynamic light scattering. In the end, we analyzed biopolymers and ionomers briefly.


Dynamic Light Scattering Calcium Oxalate Critical Aggregation Concentration Polyelectrolyte Solution Allylamine Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hara, M.: Polyelectrolytes: Science and Technology. Marcel Dekker, New York (1993)Google Scholar
  2. 2.
    Dautzenberg, H., Jaeger, W., Kotz, J., Philipp, B., Seidel, Ch., Stscherbina, D.: Polyelectrolytes: Formation, Characterization, and Application. Hanser Gardner, Munich (1994)Google Scholar
  3. 3.
    Konieczky, M., Likos, C.N., Löwen, H.: J. Chem. Phys. 121, 4913–4924 (2004)CrossRefGoogle Scholar
  4. 4.
    Liao, Q., Carrillo, J.M.Y., Dobrynin, A.V., Rubinstein, M.: Macromolecules 40, 7671–7679 (2007)CrossRefGoogle Scholar
  5. 5.
    Csajka, F.S., Netz, R.R., Seidel, C., Joanny, J.F.: Eur. Phys. J. E. 4, 505–513 (2001)CrossRefGoogle Scholar
  6. 6.
    Förster, S., Schmidt, M.: Adv. Polym. Sci. 120, 51 (1995)CrossRefGoogle Scholar
  7. 7.
    Barrat, J.L., Joanny, J.F.: Adv. Chem. Phys. 94, 1 (1996)Google Scholar
  8. 8.
    Dobrynin, A.V., Rubinstein, M.: Prog. Polym. Sci. 30, 1049 (2005)CrossRefGoogle Scholar
  9. 9.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1996)Google Scholar
  10. 10.
    Von Solms, N., Chiew, Y.C.: J. Chem. Phys. 118, 4321–4330 (2003)CrossRefGoogle Scholar
  11. 11.
    Jomaa, H.W.: A molecular walk across polyelectrolyte multilayers. Ph.D. thesis, The Florida State University (2005)Google Scholar
  12. 12.
    Fadhillah, F.: Application of polyelectrolyte multilayer reverse osmosis membrane in seawater desalination. Ph.D. thesis, King Fahd University of Petroleum & Minerals (2012)Google Scholar
  13. 13.
    Nagvekar, M., Tihminlioglu, F., Danner, R.P.: Fluid Phase Equilib. 145, 15–41 (1998)CrossRefGoogle Scholar
  14. 14.
    Amr, I.T.: Control of corrosion in stainless steel using polyelectrolytes multilayer nanofilms. M.Sc. thesis, King Fahd University of Petroleum & Minerals (2006)Google Scholar
  15. 15.
    Popov, A.: Assessing polyelectrolyte effective charge. Ph.D. thesis, University of Massachusetts Amherst (2007)Google Scholar
  16. 16.
    Razdan, S.: Novel polyelectrolyte complex based carbon nanotube composite architectures, PhD Thesis, Rensselaer Polytechnic Institute (2008)Google Scholar
  17. 17.
    Sui, Z.: Characterization and applications of pH-responsive polyelectrolyte complex and multilayers. Ph.D. thesis, The Florida State University (2004)Google Scholar
  18. 18.
    Nur, H., Pinkrah, V.T., Mitchell, J.C., Benée, L.S., Snowden, M.J.: Adv. Colloid Interface Sci. 158, 15–20 (2010)CrossRefGoogle Scholar
  19. 19.
    Dou, S.: Synthesis and characterization of ion containing polymers. Ph.D. thesis, The Pennsylvania State University (2007)Google Scholar
  20. 20.
    Jin, Z.: A hybrid density functional theory for solvation and solvent-mediated interactions. Ph.D. thesis, University of California Riverside (2012)Google Scholar
  21. 21.
    Neff, P.A., Wunderlich, B.K., Klitzing, R.V., Bausch, A.R.: Langmuir 23, 4048–4052 (2007)Google Scholar
  22. 22.
    Adusumilli, M.: Polyelectrolyte multilayer films for ion separation and water purification. Ph.D. thesis, Michigan State University (2010)Google Scholar
  23. 23.
    Müller, M., Brisssová, M., Rieser, T., Powers, A.C., Lunkwitz, K.: Mater. Sci. Eng. C. 8–9, 163–169 (1999)CrossRefGoogle Scholar
  24. 24.
    Durstock, M.F., Rubner, M.F.: Langmuir 17, 7865–7872 (2001)CrossRefGoogle Scholar
  25. 25.
    Naderi, A., Claesson, P.M.: Langmuir 22, 7639–7645 (2006)CrossRefGoogle Scholar
  26. 26.
    Casalbore-Miceli, G., Zanelli, A., Rinaldi, A.W., Camaioni, N., Yang, M.J., Li, Y., Girotto, E.M.: Sens. Actuators B 125, 120–125 (2007)CrossRefGoogle Scholar
  27. 27.
    Kang, J.: A new class of polyelectrolyte; Poly(p-phenylene disulfonic acids). Ph.D. thesis, Case Western Reserve University (2008)Google Scholar
  28. 28.
    Kundakci, S., Uzum, O.B., Karadag, E.: Polym. Compos. 32, 994–1001 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhu, L.Y., Lin, D.Q., Yao, S.J.: Carbohydr. Polym. 82, 323–328 (2010)CrossRefGoogle Scholar
  30. 30.
    Oner, M., Dogan, O.: Prog. Cryst. Growth Charact. Mater. 50, 39–51 (2005)CrossRefGoogle Scholar
  31. 31.
    Akyol, E., Bozkurt, A., Oner, M.: Polym. Adv. Technol. 17, 58–65 (2006)CrossRefGoogle Scholar
  32. 32.
    Akyol, E., Oner, M.: J. Cryst. Growth 307, 137–144 (2007)CrossRefGoogle Scholar
  33. 33.
    Dogan, O., Oner, M.: Langmuir 22, 9671–9675 (2006)CrossRefGoogle Scholar
  34. 34.
    Kirboga, S., Oner, M.: Colloids Surf., B 91, 18–25 (2012)CrossRefGoogle Scholar
  35. 35.
    Kirboga, S., Oner, M.: Colloids Surf., B 78, 357–362 (2010)CrossRefGoogle Scholar
  36. 36.
    Kirboga, S., Oner, M.: Cryst. Growth Des. 9, 2159–2167 (2009)CrossRefGoogle Scholar
  37. 37.
    Dogan, O., Akyol, E., Oner, M.: Cryst. Res. Technol. 39, 1108–1114 (2004)CrossRefGoogle Scholar
  38. 38.
    Akyol, E., Oner, M., Barouda, E., Demadis, K.D.: Cryst. Growth Des. 9, 5145–5154 (2009)CrossRefGoogle Scholar
  39. 39.
    Znidarsic, W.J.: Biomolecular localization: applications in tissue engineering. Ph.D. thesis, Faculties of University of Pennsylvania (2006)Google Scholar
  40. 40.
    Boddohi, S.: Engineering nanostructured polysaccharide-based polyelectrolyte complexes. Ph.D. thesis, Colorado State University (2009)Google Scholar
  41. 41.
    Liu, J.: Effects of chemical additives on the light weight paper. Ph.D. thesis, Georgia Institute of Technology (2004)Google Scholar
  42. 42.
    Cohen Stuart, M.A., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., et al.: Nat. Mater. 9, 101–113 (2010)CrossRefGoogle Scholar
  43. 43.
    de Gennes, P.G., Pincus, P., Velasco, R.M., Brochard, F.: J. Phys. 37, 1461–1473 (1976)CrossRefGoogle Scholar
  44. 44.
    Odijk, T.: J. Polym. Sci., Polym. Phys. Ed. 15, 477–483 (1977)CrossRefGoogle Scholar
  45. 45.
    Skolnick, J., Fixman, M.: Macromolecules 10, 944 (1977)CrossRefGoogle Scholar
  46. 46.
    Barrat, J.L., Joanny, J.F.: Europhys. Lett. 24, 333 (1993)CrossRefGoogle Scholar
  47. 47.
    Katchalsky, A.: Pure Appl. Chem. 26, 327 (1971)CrossRefGoogle Scholar
  48. 48.
    Oosawa, F.: Polyelectrolytes. Marcel Dekker, New York (1971)Google Scholar
  49. 49.
    Dobrynin, A.V., Colby, R.H., Rubinstein, M.: Macromolecules 28, 1859–1871 (1995)CrossRefGoogle Scholar
  50. 50.
    Khokhlov, A.R.: J. Phys. A: Math. Gen. 13, 979–987 (1980)CrossRefGoogle Scholar
  51. 51.
    Bordi, F., Cametti, C., Colby, R.H.: J. Phys.: Condens. Matter 16, 1423–1463 (2004)Google Scholar
  52. 52.
    Baeurle, S.A., Nogovitsin, E.A.: Polymer 48, 4883–4899 (2007)CrossRefGoogle Scholar
  53. 53.
    Fredrickson, G.H.: The Equilibrium Theory of Inhomogeneous Polymers. Clarendon Press, Oxford (2006)Google Scholar
  54. 54.
    Des Cloizeaux, J.: J. Phys. 36, 281–291 (1975)CrossRefGoogle Scholar
  55. 55.
    Des Cloizeaux, J.: J. Phys. 36, 1199–1203 (1975)CrossRefGoogle Scholar
  56. 56.
    Odijk, T.: J. Polym. Sci. Polym. Phys. Ed. 16, 627–639 (1978)CrossRefGoogle Scholar
  57. 57.
    Wang, L., Bloomfield, V.A.: Macromolecules 23, 804–809 (1990)CrossRefGoogle Scholar
  58. 58.
    Odijk, T.: Macromolecules 12, 688–693 (1979)CrossRefGoogle Scholar
  59. 59.
    Manning, G.S.: J. Chem. Phys. 51, 924–933 (1969)CrossRefGoogle Scholar
  60. 60.
    Malvern Instruments, DLS Technical notes, MRK656 (
  61. 61.
    Aschinger, A., Winter, J.: New J. Phys. 14, 093035 (2012)CrossRefGoogle Scholar
  62. 62.
    Kanai, S.: Phase separation kinetics of polyelectrolyte solutions, Ph.D. thesis, University of Massachusetts Amherst (2006)Google Scholar
  63. 63.
    Sartor, M.: Dynamic light scattering. University of California, San DiegoGoogle Scholar
  64. 64.
    Deguchi, S., Ghosh, S.K., Alargova, R.G., Tsujii, K.: J. Phys. Chem. B 110, 18358–18362 (2006)CrossRefGoogle Scholar
  65. 65.
    Murphy, R.J.: Translocation of synthetic polyelectrolytes through protein and synthetic nanopores. Ph.D. thesis, University of Massachusetts Amherst (2007)Google Scholar
  66. 66.
    Dzakpasu, R., Axelrod, D.: Biophys. J. 87, 1279–1287 (2004)CrossRefGoogle Scholar
  67. 67.
    Pynn, R.: Neutron Scattering -a Non-Destructive Microscope for Seeing Inside Matter Neutron Applications in Earth, Energy and Environmental Sciences, pp. 15–36. Springer, New York (2009)CrossRefGoogle Scholar
  68. 68.
    Fitzsimmons, M.R., Schuller, I.K.: J. Magn. Magn. Mater. 350, 199–208 (2014)CrossRefGoogle Scholar
  69. 69.
    Dittrich, H., Bieniok, A.L: Measurement Methods - Structural Properties: X-Ray and Neutron Diffraction. Elsevier, pp. 718–737 (2009)Google Scholar
  70. 70.
    Loong, C.K.: J. Phys. Chem. Solids 60, 1397–1401 (1999)CrossRefGoogle Scholar
  71. 71.
    Hall, P.L.: Neutron Scattering Techniques for the Study of Clay Minerals Developments in Sedimentology, pp. 51–75. Elsevier, Amsterdam—Oxford—New York (1982)Google Scholar
  72. 72.
    Band, Y.B., Avishai, Y.: Electronic Properties of Solids Quantum Mechanics with Applications to Nanotechnology and Information Science, pp. 381–544. Elsevier, Amsterdam—Oxford—New York (2013)CrossRefGoogle Scholar
  73. 73.
    Lewis, E.E.: Neutron Interactions Fundamentals of Nuclear Reactor Physics, pp. 29–56. Elsevier, Amsterdam—Oxford—New York (2008)CrossRefGoogle Scholar
  74. 74.
    Greene, G.L.: Physica B + C, 136, pp. 121–125, (1986)Google Scholar
  75. 75.
    Byron, O., Gilbert, R.J.: Curr. Opin. Biotechnol. 11, 72–80 (2000)CrossRefGoogle Scholar
  76. 76.
    Loong, C.K.: J. Phys. Chem. Solids 60, 1397–1401 (1999)CrossRefGoogle Scholar
  77. 77.
    Fitzsimmons, M.R., Schuller, I.K.: J. Magn. Magn. Mater. 350, 199–208 (2014)CrossRefGoogle Scholar
  78. 78.
    Lopez-Rubioa, A., Gilbert, E.P.: Trends Food Sci. Technol. 20, 576–586 (2009)CrossRefGoogle Scholar
  79. 79.
    Luk, A., Murthy, N.S., Wang, W., Rojas, R., Kohn, J.: Acta Biomater. 8, 1459–1468 (2012)CrossRefGoogle Scholar
  80. 80.
    Colmenero, J., Moreno, A.J., Alegrı, A.: Prog. Polym. Sci. 30, 1147–1184 (2005)CrossRefGoogle Scholar
  81. 81.
    Ramirez-Cuesta, A.J., Jones, M.O., David, W.I.F.: Mater. Today 12, 54–61 (2009)CrossRefGoogle Scholar
  82. 82.
    Ryzewskia, K., Herringerb, S., Bilheuxc, H., Walkerc, L., Sheldonb, B., Voisinc, S., Bilheuxc, J.-C., Finocchiaro, V.: Phys. Procedia. 43, 343–35 (2013)CrossRefGoogle Scholar
  83. 83.
    Siourisa, I.M., Walter, J.: Phys. B 385–386, 225–227 (2006)CrossRefGoogle Scholar
  84. 84.
    Sinha, S.K.: J. Phys. Chem. Solids 68, 2048–2051 (2007)CrossRefGoogle Scholar
  85. 85.
    Kearley, G.J., Johnson, M.R.: Vib. Spectrosc. 53, 54–59 (2010)CrossRefGoogle Scholar
  86. 86.
    Strobl, M.: Nuc. Instrum. Methods Phys. Res. A 604, 646–652 (2009)CrossRefGoogle Scholar
  87. 87.
    Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H.: Philos. Trans. Roy. Soc. B 364, 2127–2139 (2009)CrossRefGoogle Scholar
  88. 88.
    Davis, G., Song, J.: Ind. Crops Prod. 23, 147–161 (2006)CrossRefGoogle Scholar
  89. 89.
    Pal, K., Paulson, A.T., Rousseau, D.: Biopolymers in Controlled-Release Delivery Systems, Modern Biopolymer Science, pp. 519–557, (2009)Google Scholar
  90. 90.
    Enderle, J., Blanchard, S., Bronzino, J.: Biomaterials: Properties, Types and Applications Introduction to Biomedical Engineering, pp. 519–557. Academic Press, San Diego, California (2005)Google Scholar
  91. 91.
    Yates, M.R., Barlow, C.Y.: Resources. Conserv. Recycl. 78, 54–66 (2013)CrossRefGoogle Scholar
  92. 92.
    Rudin, A., Choi, P.: Biopolymers, the Elements of Polymer Science and Engineering, 3rd edn, pp. 521–535. Academic Press, USA (2013)CrossRefGoogle Scholar
  93. 93.
    Tirrell, J.G., Tirrell, D.A.: Curr. Opin. Solid State Mater. Sci. 1, 407–411 (1996)CrossRefGoogle Scholar
  94. 94.
    Nanda, R.K., Tewari, R Govil, G.: Govil Structure of Polynucleotide and Nucleic acids. Bull. Nat. Acad. Sci. In: Proceedings of Kanekar Memorial Symposium, 40, 226 (1974)Google Scholar
  95. 95.
    Loewen, P.C., Khorana, H.G.: J. Biol. Chem. 248, 3489–3499 (1973)Google Scholar
  96. 96.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry. W.H. Freeman, New York (2002)Google Scholar
  97. 97.
    Chow, D., Nunalee, M.L., Lim, D.W., Simnick, A.J., Chilkoti, A.: Mater. Sci. Eng. R 62, 125–155 (2008)CrossRefGoogle Scholar
  98. 98.
    Nitta, Y., Nishinari, K.: J. Biol. Macromol. 5, 47–52 (2005)Google Scholar
  99. 99.
    Soroudi, A., Jakubowicz, I.: Eur. Polymer J. 49, 2839–2858 (2013)CrossRefGoogle Scholar
  100. 100.
    Bastioli, C.: Handbook of biodegradable polymers. Rapra Technology Limited (2005)Google Scholar
  101. 101.
    Capek, I.: Adv. Colloid Interface Sci. 112, 1–29 (2004)CrossRefGoogle Scholar
  102. 102.
    Iojoiu, C., Genova-Dimitrova, P., Mar´echal, M., Sanchez, J.Y.: Electrochim. Acta 51, 4789–4801 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentYıldız Technical UniversityIstanbulTurkey

Personalised recommendations