Polyelectrolyte: Thermodynamics and Rheology

State of Art, New Challenges and Opportunities
  • Visakh P.  M. Email author
Part of the Engineering Materials book series (ENG.MAT.)


The present chapter deals with a brief account on various types topics in polyelectrolyte: thermodynamics and rheology, structure and thermodynamics of polyelectrolyte complexes, polyelectrolyte: science and application, biological polyelectrolytes: relevance to nature and its interactions, polyelectrolyte hydrogels: thermodynamics, thermodynamic and rheological properties of polyelectrolyte systems, complexes formation between proteins and polyelectrolytes and their application in the downstream processes of enzyme purification, polyelectrolyte complexes: bridging the ensemble average—single-molecule strategies, stratified interpolyelectrolyte complexes: fabrication, structure and properties and monte carlo studies in polyelectrolyte solutions: structure and thermodynamics. This chapter also discussed recent technical research accomplishments in the area of polyelectrolyte: thermodynamics and rheology having immense structural possibilities for chemical and mechanical modifications to generate novel properties, functions and applications especially polyelectrolyte.


Alginic Acid Hyaluronic Acid Polyelectrolyte Complex Polyelectrolyte Chain Hansen Solubility Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barrat, J.L., Joanny, J.F.: Theory of polyelectrolyte solutions. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics, Polymeric Systems, vol. 94, p. 66. Wiley, Hoboken (1996)Google Scholar
  2. 2.
    Kuhn, W., Künzle, O., Katchalsky, A.: Behavior of polyvalent thread molecule ions in solution. HCA 31, 1994–2037 (1948). doi: 10.1002/hlca.19480310716 CrossRefGoogle Scholar
  3. 3.
    Manning, G.S.: The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978)CrossRefGoogle Scholar
  4. 4.
    Jiang, G., Min, S.-H., Hahn, S.K.: DNA/PEI/Alginate polyplex as an efficient in vivo gene delivery system. Biotechnol. Bioprocess Eng. 12, 684–689 (2007)CrossRefGoogle Scholar
  5. 5.
    Hamman, J.H.: Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 8, 1305–1322 (2010). doi: 10.3390/md8041305 CrossRefGoogle Scholar
  6. 6.
    Osawa, F., Imai, N., Kagawa, I.: Theory of strong polyelectrolyte solutions. J. Polym. Sci. XIII, 93–111 (1954)Google Scholar
  7. 7.
    Gennes, P.G., Pincus, P., Velasco, R.M., Brochard, F.: Remarks on polyelectrolyte conformation. J. Phys. Fr. 37, 1461–1473 (1976). doi: 10.1051/jphys:0197600370120146100 CrossRefGoogle Scholar
  8. 8.
    Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 9, 660 (1941). doi: 10.1063/1.1750971 CrossRefGoogle Scholar
  9. 9.
    Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 51, 51–61 (1942). doi: 10.1063/1.1723621 CrossRefGoogle Scholar
  10. 10.
    Huggins, M.L.: Solutions of long chain compounds. J. Chem. Phys. 9, 440 (1941). doi: 10.1063/1.1750930 CrossRefGoogle Scholar
  11. 11.
    Michaeli, I., Overbeek, J.T.G., Voorn, M.J.: Phase separation of polyelectrolyte solutions. J. Polym. Sci. 23, 443–450 (1957)CrossRefGoogle Scholar
  12. 12.
    Razdan, S.: Novel polyelectrolyte complex based carbon nanotube composite architectures. PhD thesis, Rensselaer Polytechnic Institute (2008)Google Scholar
  13. 13.
    Sui, Z.: Characterization and applications of pH-responsive polyelectrolyte complex and multilayers. PhD thesis, The Florida State University (2004)Google Scholar
  14. 14.
    Amr, I.T.: Control of corrosion in stainless steel using polyelectrolytes multilayer nanofilms. Msc thesis, King Fahd University of Petroleum and Minerals (2006)Google Scholar
  15. 15.
    Nagvekar, M., Tihminlioglu, F., Danner, R.P.: Colligative properties of polyelectrolyte solutions. Fluid Phase Equilib. 145, 15–41 (1998)CrossRefGoogle Scholar
  16. 16.
    Fadhillah, F.: Application of polyelectrolyte multilayer reverse osmosis membrane in seawater desalination. PhD thesis, King Fahd University of Petroleum and Minerals (2012)Google Scholar
  17. 17.
    Dou, S.: Synthesis and characterization of ion containing polymers. PhD thesis, The Pennsylvania State University (2007)Google Scholar
  18. 18.
    Jomaa, H.W.: A molecular walk across polyelectrolyte multilayers. PhD thesis, The Florida State University (2005)Google Scholar
  19. 19.
    Jin, Z.: A hybrid density functional theory for solvation and solvent-mediated interactions. PhD thesis, University of California Riverside (2012)Google Scholar
  20. 20.
    Osada, Y., Gong, J.P.: Soft and wet materials: polymer gels. Adv. Mater. 10, 827 (1998)CrossRefGoogle Scholar
  21. 21.
    Seliktar, D.: Designing cell comparable hydrogels for biomedical applications. Science 336, 1124 (2012)CrossRefGoogle Scholar
  22. 22.
    Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S., et al.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101 (2010)CrossRefGoogle Scholar
  23. 23.
    Liu, L., Wang, W., Ju, X.J., Xie, R., Chu, L.Y.: Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter 6, 3759 (2010)CrossRefGoogle Scholar
  24. 24.
    Drury, J.L., Mooney, D.J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337 (2003)CrossRefGoogle Scholar
  25. 25.
    Brandl, F., Sommer, F., Goepferich, A.: Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28, 134 (2007)CrossRefGoogle Scholar
  26. 26.
    Gehrke, S.H., Uhden, L.H., McBride, J.F.: Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. J. Controlled Release 55, 21 (1998)CrossRefGoogle Scholar
  27. 27.
    Stevens, K.R., Einerson, N.J., Burmania, J.A., Kao, W.Y.J.: In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks. J. Biomater. Sci.-Polym. Ed. 13, 1353 (2002)CrossRefGoogle Scholar
  28. 28.
    Mirzaei, B.E., Ramazani, S.A.A., Shafiee, M., Danaei, M.: Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int. J. Polym. Mater. Polym. Biomater. 62, 605 (2013)CrossRefGoogle Scholar
  29. 29.
    Maurer, G., Prausnitz, J.M.: Thermodynamics of phase equilibrium for systems containing gels. Fluid Phase Equilib. 115, 113 (1996)CrossRefGoogle Scholar
  30. 30.
    Fumio, U., Hiroshi, Y., Kumiko, N., Sachihiko, N., Kenji, S., Yasunori, M.: Swelling and mechanical properties of poly(vinyl alcohol) hydrogels. Int. J. Pharm. 58, 135 (1990)CrossRefGoogle Scholar
  31. 31.
    Kim, S., Chu, C.C.: Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry. J. Biomed. Mater. Res. 2000(53), 258Google Scholar
  32. 32.
    Peppas, N.: Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 50, 27 (2000)CrossRefGoogle Scholar
  33. 33.
    Grant, D.W., Higuchi, T.: Ion pairs and solubility behavior. Solubility behavior of organic compounds, vol. XXI. In: Techniques of Chemistry. Willey Interscience, NewYork (1990)Google Scholar
  34. 34.
    Drifford, M., Delsanti, M.: Polyelectrolyte solutions with multivalent added salts: stability, structure, and dynamics. In: Radeva, T. (ed.) Physical Chemistry of Polyelectrolytes, vol. 99. Surfactant Science Series. Marcel Dekker, NewYork (2001)Google Scholar
  35. 35.
    Porasso, R.D., Benegas, J.C., Van den Hoop, M.A.G.T., Paoletti, S.: Chemical bonding of divalent counterions to linear polyelectrolytes: theoretical treatment within the counterion condensation theory. Phys. Chem. Chem. Phys. 3(6), 1057–1062 (2001)CrossRefGoogle Scholar
  36. 36.
    Benegas, J.C., Paoletti, S., Van Den Hoop, M.A.G.T.: Affinity interactions in counterion-polyelectrolyte systems: competition between different counterions. Macromol. Theor. Simul. 8(1), 61–64 (1999)CrossRefGoogle Scholar
  37. 37.
    Barnes, H.A.: A handbook of elementary rheology. Cambrian Printers, Wales (2000)Google Scholar
  38. 38.
    Graessley, W.W.: Polymeric liquids and networks: dynamics and rheology. Taylor & Francis Group, New York (2008)Google Scholar
  39. 39.
    Krause, W., Bellomo, E., Colby, R.: Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules 2, 65–69 (2001)CrossRefGoogle Scholar
  40. 40.
    Rinaudo, M.: Rheological investigation on hyaluronan-fibrinogen interaction. Int. J. Biol. Macromol. 43, 444–450 (2008)CrossRefGoogle Scholar
  41. 41.
    Gutowski, I.: The effect of pH and concentration on the rheology of carbopol gels. Ms Sci thesis. McGill University, Israel (2008)Google Scholar
  42. 42.
    Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)CrossRefGoogle Scholar
  43. 43.
    Klooster, N.T.M., Van der Touw, F., Mandel, M.: Solvent effects in polyelectrolyte solutions. 1. Potentiometric and viscosimetric titration of poly(acrylic acid) in methanol and counterion specificity. Macromolecules 17(10), 2070–2078 (1984)CrossRefGoogle Scholar
  44. 44.
    Rinaudo, M.: Polyelectrolyte properties of a plant and animal polysaccharide. Struct. Chem. 20(2), 277–289 (2009)CrossRefGoogle Scholar
  45. 45.
    Simsek-Ege, F.A., Bond, G.M., Stringer, J.: Polyelectrolyte complex formation between alginate and chitosan as a function of pH. J. Appl. Polym. Sci. 88(2), 346–351 (2003)CrossRefGoogle Scholar
  46. 46.
    Chavasit, V., Torres, J.A.: Chitosan-Poly(acrylic acid): mechanism of complex formation and potential industrial applications. Biotechnol. Prog. 6(1), 2–6 (1990)CrossRefGoogle Scholar
  47. 47.
    Cooper, C.L., et al.: Polyelectrolyte–protein complexes. Curr. Opin. Colloid Interface Sci. 10(1–2), 52–78 (2005)CrossRefGoogle Scholar
  48. 48.
    Thünemann, A., et al.: Polyelectrolyte Complexes. In: Schmidt, M. (ed.) Polyelectrolytes with Defined Molecular Architecture II, p. 113–171. Springer, Berlin (2004)Google Scholar
  49. 49.
    Renault, F., et al.: Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur. Polymer J. 45(5), 1337–1348 (2009)CrossRefGoogle Scholar
  50. 50.
    Cappella, L.V., Boeris, V., Picó, G.: A simple method of chymotrypsin concentration and purification from pancreas homogenate using Eudragit® L100 and Eudragit® S100. J. Chromatogr. B 879(13–14), 1003–1007 (2011)CrossRefGoogle Scholar
  51. 51.
    Carlsson, F., Linse, P., Malmsten, M.: Monte carlo simulations of polyelectrolyte−protein complexation. J. Phys. Chem. B 2014/01/09 105(38), 9040–9049 (2001)Google Scholar
  52. 52.
    Mangenot, S., Leforestier, A., Vachette, P., Durand, D., Livolant, F.: Salt-induced conformation and interaction changes of nucleosome core particles. Biophys. J. 82, 345–356 (2002)CrossRefGoogle Scholar
  53. 53.
    Mangenot, S., Raspaud, E., Tribet, C., Belloni, L., Livolant, F.: Interactions between isolated nucleosome core particles. Eur. Phys. J. E 7, 221–231 (2002)CrossRefGoogle Scholar
  54. 54.
    Bertin, A., Leforestier, A., Durand, D., Livolant, F.: Role of histone tails in the conformation and interactions of nucleosome core particles. Biochemistry 43, 4773–4780 (2004)CrossRefGoogle Scholar
  55. 55.
    Allahyarov, E., Löwen, H., Hansen, J.P., Louis, A.A.: Nonmonotonic variation with salt concentration of the second virial coefficient in protein solutions. Phys. Rev. E 67(051404), 051401–051413 (2003)Google Scholar
  56. 56.
    Boroudjerdi, H., Netz, R.R.: Interactions between polyelectrolyte-macroion complexes. Europhys. Lett. 64, 413–419 (2003)CrossRefGoogle Scholar
  57. 57.
    Boroudjerdi, H., Netz, R.R.: Strongly coupled polyelectrolyte-macroion complexes. J. Phys.: Condens. Matter 17, S1137–S1151 (2005)Google Scholar
  58. 58.
    Mühlbacher, F., Schiessel, H., Holm, C.: Tail-induced attraction between nucleosome core particles. Phys. Rev. E 74(3), 031919 (2006)CrossRefGoogle Scholar
  59. 59.
    Korolev, N., Lyubartsev, A.P., Nordenskiöld, L.: Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys. J. 90, 4305–4316 (2006)CrossRefGoogle Scholar
  60. 60.
    Gus’kova, O.A., Pavlov, A.S., Khalatur, P.G.: Complexes based on rigid-chain polyelectrolytes: computer simulation. Polym. Sci. Ser. A 48(7), 763–770 (2006)CrossRefGoogle Scholar
  61. 61.
    Narambuena, C.F., Leiva, E.P.M., Chávez-Páez, M., Pérez, E.: Effect of chain stiffness on the morphology of polyelectrolyte complexes. A monte carlo simulation study. Polymer 51, 3293–3302 (2010)CrossRefGoogle Scholar
  62. 62.
    Bloomfield, V.: DNA condensation. Curr. Opin. Struct. Biol. 6, 334–341 (1996)CrossRefGoogle Scholar
  63. 63.
    Bloomfield, V.: DNA condensation by multivalent cations. Biopolymers 44, 269–282 (1997)CrossRefGoogle Scholar
  64. 64.
    Thünemann, A.F., Müller, M., Dautzenberg, H., Joanny, J.F., Löwen, H.: Polyelectrolyte complexes. Adv. Polym. Sci. 166, 113–171 (2004)CrossRefGoogle Scholar
  65. 65.
    Brown, A.: Analysis of cooperativity by isothermal titration calorimetry. Int. J. Mol. Sci. 10(8), 3457–3477 (2009)CrossRefGoogle Scholar
  66. 66.
    Priftis, D., Laugel, N., Tirrell, M.: Thermodynamic characterization of polypeptide complex coacervation. Langmuir 28(45), 15947–15957 (2012)CrossRefGoogle Scholar
  67. 67.
    Dias, R.S., Pais, A.A.C.C., Miguel, M.G., Lindman, B.: Modeling of DNA compaction by polycations. J. Chem. Phys. 119(15), 8150–8157, 15 Oct 2003Google Scholar
  68. 68.
    Dias, R.S., Linse, P., Pais, A.A.C.C.: Stepwise disproportionation in polyelectrolyte complexes. J. Comput. Chem. 32, 2697–2707 (2011)CrossRefGoogle Scholar
  69. 69.
    von Hippel, P.H., McGhee, J.D.: DNA-protein interaction. Annu. Rev. Biochem. 41, 231–300 (1972)CrossRefGoogle Scholar
  70. 70.
    Danielsen, S., Vårum, K.M., Stokke, B.T.: Structural analysis of chitosan mediated DNA condensation by AFM: influence of chitosan molecular parameters. Biomacromolecules 5, 928–936 (2004)CrossRefGoogle Scholar
  71. 71.
    Liu, G., Molas, M., Grossmann, G.A., Pasumarthy, M., Perales, J.C., Cooper, M.J., et al.: Biological properties of Poly-L-lysine-DNA complexes generated by cooperative binding of the polycation. J. Biol. Chem. 276(37), 34379–34387 (2001)CrossRefGoogle Scholar
  72. 72.
    Rackstraw, B.J., Martin, A.L., Stolnik, S., Roberts, C.J., Garnett, M.C., Davies, M.C., et al.: Microscopic investigations into PEG-cationic polymer-induced DNA condensation. Langmuir 17(11), 3185–3193 (2001)CrossRefGoogle Scholar
  73. 73.
    Eickbush, T.H., Moudrianakis, E.N.: The compaction of DNA helices into either continous supercoils or folded-fiber rods and toroids. Cell 13, 295–306 (1978)CrossRefGoogle Scholar
  74. 74.
    Noguchi, H., Saito, S., Kidoaki, S., Yoshikawa, K.: Self-organized nanostructures constructed with a single polymer chain. Chem. Phys. Lett. 261, 527–533 (1996)CrossRefGoogle Scholar
  75. 75.
    Noguchi, H., Yoshikawa, K.: First-order phase transition in stiff polymer chain. Chem. Phys. Lett. 278, 184–188 (1997)CrossRefGoogle Scholar
  76. 76.
    Noguchi, H., Yoshikawa, K.: Folding path in a semiflexible homopolymer chain: a Brownian dynamics simulation. J. Chem. Phys. 113, 854–862 (2000)CrossRefGoogle Scholar
  77. 77.
    Noguchi, H., Yoshikawa, K.: Morphological variation in a collapsed single homopolymer chain. J. Chem. Phys. 109, 5070–5077 (1998)CrossRefGoogle Scholar
  78. 78.
    Stevens, M.J.: Simple simulations of DNA condensation. Biophys. J. 80, 130–139 (2001)CrossRefGoogle Scholar
  79. 79.
    Ariga, K., Moria, T., Hilla, J.P.: Evolution of molecular machines: from solution to soft matter interface. Soft Matter 8, 15–20 (2012)CrossRefGoogle Scholar
  80. 80.
    Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9, 2319–2340 (2007)CrossRefGoogle Scholar
  81. 81.
    Decher, G.: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232–1237 (1997)CrossRefGoogle Scholar
  82. 82.
    von Klitzing, R.: Internal structure of polyelectrolyte multilayer assemblies. Phys. Chem. Chem. Phys. 8, 5012–5033 (2006)CrossRefGoogle Scholar
  83. 83.
    Holmberg, K., Jönsson, B., Kronberg, B., Lindman, B.: Surfactants and polymers in aqueous solution. John Wiley & Sons, Chichester (2002)CrossRefGoogle Scholar
  84. 84.
    Picart, C., Mutterer, J., Richert, L., Luo, Y., Prestwich, G.D., Schaaf, P., Voegel, J.-C., Lavalle, P.: Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc. Nat. Acad. Sci. USA 99, 12531–12535 (2002)CrossRefGoogle Scholar
  85. 85.
    Burke, S.E., Barrett, C.J.: Swelling behavior of hyaluronic acid/polyallylamine hydrochloride multilayer films. Biomacromolecules 6, 1419–1428 (2005)CrossRefGoogle Scholar
  86. 86.
    Dubas, S.T., Schlenoff, J.B.: Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32, 8153–8160 (1999)CrossRefGoogle Scholar
  87. 87.
    Guzmán, E., Ritacco, H.A., Ortega, F., Rubio, R.G.: Growth of polyelectrolyte layers formed by poly(4-styrenesulfonate sodium salt) and two different polycations: new insights from study of adsorption kinetics. J. Phys. Chem. C 116, 15474–15483 (2012)CrossRefGoogle Scholar
  88. 88.
    Guzmán, E., Miguel, V.S., Peinado, C., Ortega, F., Rubio, R.G.: Polyelectrolyte multilayers containing triblock copolymers of different charge ratio. Langmuir 26, 11494–11502 (2010)CrossRefGoogle Scholar
  89. 89.
    Shen, L., Chaudouet, P., Ji, J., Picart, C.: pH-Amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability. Biomacromolecules 12, 1322–1331 (2011)CrossRefGoogle Scholar
  90. 90.
    Record, M.T., Guinn, E., Pegram, L., Capp, M.: Introductory lecture: interpreting and predicting hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Disc 160, 9–44 (2013)CrossRefGoogle Scholar
  91. 91.
    Leontidis, E.: Hofmeister anion effects on surfactant self-assembly and the formation of porous solids. Curr. Opin. Colloid Interface Sci. 7, 81–91 (2002)CrossRefGoogle Scholar
  92. 92.
    Long, Y., Wang, T., Liu, L., Liu, G., Zhang, G.: Ion specificity at a low salt concentration in water—methanol mixtures exemplified by a growth of polyelectrolyte multilayer. Langmuir 29, 3645–3653 (2013)CrossRefGoogle Scholar
  93. 93.
    Schmitt, J., Griinewald, T., Decher, G., Pershan, P.S., Kjaer, K., Losche, M.: Internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and x-ray reflectivity study. Macromolecules 26, 7058–7063 (1993)CrossRefGoogle Scholar
  94. 94.
    Lösche, M., Schmitt, J., Decher, G., Bouwman, W.G., Kjaer, K.: Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules 31, 8893–8906 (1998)CrossRefGoogle Scholar
  95. 95.
    Korneev, D., Lvov, Y., Decher, G., Schmitt, J., Yaradaikin, S.: Neutron reflectivity analysis of self assembled film superlattices with alternate layers of deuterated and hydrogenated polysterenesulfonate and polyallylamine. Phys. B 213, 954–956 (1995)CrossRefGoogle Scholar
  96. 96.
    Singh, S., Junghans, A., Waltman, M.J., Nagy, A., Iyer, R., Majewski, J.: Neutron reflectometry characterization of PEI–PSS polyelectrolyte multilayers for cell culture. Soft Matter 8, 11484–11491 (2012)CrossRefGoogle Scholar
  97. 97.
    Lehaf, A.M., Moussallem, M.D., Schlenoff, J.B.: Correlating the compliance and permeability of photo-cross-linked polyelectrolyte multilayers. Langmuir 27, 4756–4763 (2011)CrossRefGoogle Scholar
  98. 98.
    Antipov, A.A., Sukhorukov, G.B., Leporatti, S., Radtchenko, I.L., Donath, E., Mohwald, H.: Polyelectrolyte multilayer capsule permeability control. Colloids Surf. A 198–200, 535–541 (2002)CrossRefGoogle Scholar
  99. 99.
    Ladam, G., Schaad, P., Voegel, J.C., Schaaf, P., Decher, G., Cuisinier, F.: In situ determination of the structural properties of initially deposited polyelectrolyte multilayers. Langmuir 16, 1249–1255 (1999)CrossRefGoogle Scholar
  100. 100.
    Guzmán, E., Ritacco, H., Rubio, J.E.F., Rubio, R.G., Ortega, F.: Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyldimethylammoniumchloride) and poly(4-styrene sulfonate of sodium). Soft Matter 5, 2130–2142 (2009)CrossRefGoogle Scholar
  101. 101.
    Brender, C., Lax, M., Windwer, S.: Monte Carlo study of polyelectrolyte behavior. II. Configurational properties. J. Chem. Phys. 74, 2576 (1981)CrossRefGoogle Scholar
  102. 102.
    Wallin, T., Linse, P.: Monte carlo simulations of polyelectrolytes at charged micelles. 1. Effects of chain flexibility. Langmuir 12, 305 (1996)Google Scholar
  103. 103.
    Intermolecular and Surface Forces: Israelchvilli. J. N. Cornell University Press, Ithaca (1985)Google Scholar
  104. 104.
    McQuarrie, D.A.: Statistical mechanics. University Science Books, Sausalito (2000)Google Scholar
  105. 105.
    Maurstad, G., Danielsen, S., Stokke, B.T.: Analysis of compacted semiflexible polyanions visualized by AFM: Influence of chain stiffness on morphologies of polyelectrolyte complexes. J. Phys. Chem. B 107, 8172 (2003)CrossRefGoogle Scholar
  106. 106.
    Danielsen, S., Vårum, K.M., Stokke, B.T.: Structural analysis of chitosan mediated DNA condensation by AFM: influence of chitosan molecular parameters. Biomacromolecules 5, 928 (2004)CrossRefGoogle Scholar
  107. 107.
    Maurstad, G., Danielsen, S., Stokke, B.T.: The influence of charge density of chitosan in compacting polyanions DNA and xanthan. Biomacromolecules 8, 1124 (2007)CrossRefGoogle Scholar
  108. 108.
    Bloomfield, V.A.: DNA condensation. Curr. Opin. Struct. Biol. 6, 334 (1996)CrossRefGoogle Scholar
  109. 109.
    Mangui, M., Netz, R.R.: Variational theory for a single polyelectrolyte chain revisited. Eur. Phys. J. E 14, 67 (2004)CrossRefGoogle Scholar
  110. 110.
    Narambuena, C.F., Leiva, E.P.M., Chávez-Páez, M., Pérez, E.: Effect of Chain Stiffness on the Morphology of Polyelectrolyte Complexes. A Monte Carlo Simulation Study. Polymer 51, 3293 (2010)CrossRefGoogle Scholar
  111. 111.
    Muthukumar, M.: Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. J. Chem. Phys. 120, 9343 (2004)CrossRefGoogle Scholar
  112. 112.
    Muthukumar, M.: Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor. J. Chem. Phys. 137, 034902 (2012)CrossRefGoogle Scholar
  113. 113.
    Kabanov, A.V., Bronich, T.K., Kabanov, V.A., Yu, K., Eisenberg, A.: Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-poly(methacrylate) anion. Macromolecules 29, 6797 (1996)CrossRefGoogle Scholar
  114. 114.
    Decher, G.: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232 (1997)CrossRefGoogle Scholar
  115. 115.
    Decher, G., Schlenoff, J.B. (eds.): Multilayer thin films: sequential assembly of nanocomposite materials. Wiley-VCH, Weinheim (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations