Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 769 Accesses

Abstract

My focus in this thesis is high-order harmonic generation (HHG) by an intense ultrafast laser field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The influence of atoms or molecules on the external field is also included in this treatment.

  2. 2.

    In the derivation, \(e = -1\) in the atomic unit. This convention is different from what has been used by Lewenstein et al. [7], and this results in a sign change in front of \(E(t)\) and \(A(t)\).

  3. 3.

    The velocity operator in Lewenstein et al. [7] is \(\vec {v}=\vec {p}-\vec {A}(t)\). The discrepancy is due to the convention of \(e\) in the atomic unit.

  4. 4.

    In the calculation, the ground-state electronic wave function of an atom or a molecule can be obtained by using quantum chemistry codes such as GAMESS or GAUSSIAN [18].

  5. 5.

    The induced dipole moment is actually expressed in the molecular (or body-fixed) frame.

  6. 6.

    The propagation of laser pulse in an isotropic molecular medium is similar to that in an atomic medium. In general, the optical properties are anisotropic, so the laser evolution in a partially aligned molecular medium should also take the alignment effects into account.

  7. 7.

    See Appendix D for details.

  8. 8.

    This is also true for laser propagation in a partially aligned molecular medium.

  9. 9.

    If laser beam can be considered as a Gaussian beam, its spatial and temporal dependence is given approximately in Appendix D.3.

  10. 10.

    In [49, 50], the integral over \(\phi '\) in Eqs. (2.60) and (2.65) is incorporated into \(\rho (\theta ',\alpha )\).

  11. 11.

    \(\tilde{E}_{\text{ h }}(r,z',\omega )\) is expressed in the frequency domain, and its phase is also involved. Due to the different convention of Fourier transformation, this phase may need to change its sign before entering into the Eq. (2.67).

  12. 12.

    Note that the elements of an \(ABCD\) matrix are not expressed explicitly in Eq. (2.67), but the explicit expression can be found in Appendix D.2.

References

  1. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Prentice-Hall, New York, 2003)

    Google Scholar 

  2. C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Atoms in Intense Laser Fields (Cambridge University Press, New York, 2012)

    Google Scholar 

  3. J.L. Krause, K.J. Schafer, K.C. Kulander, High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992)

    Article  ADS  Google Scholar 

  4. K.C. Kulander, B.W. Shore, Calculations of multiple-harmonic conversion of 1064-nm radiation in Xe. Phys. Rev. Lett. 62, 524–526 (1989)

    Article  ADS  Google Scholar 

  5. J.C. Light, I.P. Hamilton, J.V. Lill, Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 82, 1400–1409 (1985)

    Article  ADS  Google Scholar 

  6. X.M. Tong, S.I. Chu, Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chem. Phys. 217, 119–130 (1997)

    Article  ADS  Google Scholar 

  7. M. Lewenstein, Ph Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  Google Scholar 

  8. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1991 (1993)

    Article  ADS  Google Scholar 

  9. X.X. Zhou, X.M. Tong, Z.X. Zhao, C.D. Lin, Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules. Phys. Rev. A 71, 061801 (2005)

    Article  ADS  Google Scholar 

  10. X.X. Zhou, X.M. Tong, Z.X. Zhao, C.D. Lin, Alignment dependence of high-order harmonic generation from N\(_2\) and O\(_2\) molecules in intense laser fields. Phys. Rev. A 72, 033412 (2005)

    Article  ADS  Google Scholar 

  11. C.C. ChirilÇŽ, M. Lein, Strong-field approximation for harmonic generation in diatomic molecules. Phys. Rev. A 73, 023410 (2006)

    Article  ADS  Google Scholar 

  12. J.P. Marangos, C. Altucci, R. Velotta, E. Heesel, E. Springate, M. Pascolini, L. Poletto, P. Villoresi, C. Vozzi, G. Sansone, M. Anscombe, J.-P. Caumes, S. Stagira, M. Nisoli, Molecular orbital dependence of high-order harmonic generation. J. Mod. Opt. 53, 97–111 (2006)

    Article  ADS  Google Scholar 

  13. A.T. Le, X.M. Tong, C.D. Lin, Evidence of two-center interference in high-order harmonic generation from CO\(_2\). Phys. Rev. A 73, 041402 (2006)

    Article  ADS  Google Scholar 

  14. S. Ramakrishna, T. Seideman, Information content of high harmonics generated from aligned molecules. Phys. Rev. Lett. 99, 113901 (2007)

    Article  ADS  Google Scholar 

  15. S. Odz̆ak, D. B. Milos̆ević, Interference effects in high-order harmonic generation by homonuclear diatomic molecules. Phys. Rev. A, 79, 023414 (2009)

    Google Scholar 

  16. A. Abdurrouf, F.H.M. Faisal, Theory of intense-field dynamic alignment and high-order harmonic generation from coherently rotating molecules and interpretation of intense-field ultrafast pump-probe experiments. Phys. Rev. A 79, 023405 (2009)

    Article  ADS  Google Scholar 

  17. P. Antoine, A. L’Huillier, M. Lewenstein, P. Salières, B. Carré, Theory of high-order harmonic generation by an elliptically polarized laser field. Phys. Rev. A 53, 1725–1745 (1996)

    Article  ADS  Google Scholar 

  18. M.J. Frisch et al., GAUSSIAN 03, Revision C.02 (Gaussian Inc., Pittsburgh, 2003)

    Google Scholar 

  19. T. Morishita, A.T. Le, Z. Chen, C.D. Lin, Accurate retrieval of structural information from laser-induced photoelectron and high-order harmonic spectra by few-cycle laser pulses. Phys. Rev. Lett. 100, 013903 (2008)

    Article  ADS  Google Scholar 

  20. A.T. Le, R.R. Lucchese, S. Tonzani, T. Morishita, C.D. Lin, Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009)

    Article  ADS  Google Scholar 

  21. C.D. Lin, A.T. Le, Z. Chen, T. Morishita, R. Lucchese, Strong-field rescattering physics–self-imaging of a molecule by its own electrons. J. Phys. B 43, 122001 (2010)

    Article  ADS  Google Scholar 

  22. A.T. Le, T. Morishita, C.D. Lin, Extraction of the species-dependent dipole amplitude and phase from high-order harmonic spectra in rare-gas atoms. Phys. Rev. A 78, 023814 (2008)

    Article  ADS  Google Scholar 

  23. H.G. Muller, Numerical simulation of high-order above-threshold-ionization enhancement in argon. Phys. Rev. A 60, 1341–1350 (1999)

    Article  ADS  Google Scholar 

  24. X.M. Tong, C.D. Lin, Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B 38, 2593–2600 (2005)

    Article  ADS  Google Scholar 

  25. R.R. Lucchese, G. Raseev, V. McKoy, Studies of differential and total photoionization cross sections of molecular nitrogen. Phys. Rev. A 25, 2572–2587 (1982)

    Article  ADS  Google Scholar 

  26. R.R. Lucchese, V. McKoy, Studies of differential and total photoionization cross sections of carbon dioxide. Phys. Rev. A 26, 1406–1418 (1982)

    Article  ADS  Google Scholar 

  27. X.M. Tong, Z.X. Zhao, C.D. Lin, Theory of molecular tunneling ionization. Phys. Rev. A 66, 033402 (2002)

    Article  ADS  Google Scholar 

  28. A.T. Le, R.D. Picca, P.D. Fainstein, D.A. Telnov, M. Lein, C.D. Lin, Theory of high-order harmonic generation from molecules with intense laser pulses. J. Phys. B 41, 081002 (2008)

    Article  ADS  Google Scholar 

  29. A.T. Le, R.R. Lucchese, M.T. lee, C.D. Lin, Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules. Phys. Rev. Lett. 102, 203001 (2009)

    Google Scholar 

  30. A.T. Le, R.R. Lucchese, C.D. Lin, Uncovering multiple orbitals influence in high-harmonic generation from aligned N\(_2\). J. Phys. B 42, 211001 (2009)

    Article  ADS  Google Scholar 

  31. E. Esarey, P. Sprangle, J. Krall, A. Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33, 1879–1914 (1997)

    Article  ADS  Google Scholar 

  32. E. Takahashi, V. Tosa, Y. Nabekawa, K. Midorikawa, Experimental and theoretical analyses of a correlation between pump-pulse propagation and harmonic yield in a long-interaction medium. Phys. Rev. A 68, 023808 (2003)

    Article  ADS  Google Scholar 

  33. M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, Light propagation in field-ionizing media: Extreme nonlinear optics. Phys. Rev. Lett. 83, 2930–2933 (1999)

    Article  ADS  Google Scholar 

  34. M.B. Gaarde, J.L. Tate, K.J. Schafer, Macroscopic aspects of attosecond pulse generation. J. Phys. B 41, 132001 (2008)

    Article  ADS  Google Scholar 

  35. S.C. Rae, K. Burnett, Detailed simulations of plasma-induced spectral blueshifting. Phys. Rev. A 46, 1084–1090 (1992)

    Article  ADS  Google Scholar 

  36. E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, C. de Lisio, Nonadiabatic three-dimensional model of high-order harmonic generation in the few-optical-cycle regime. Phys. Rev. A 61, 063801 (2000)

    Article  ADS  Google Scholar 

  37. M.V. Ammosov, N.B. Delone, V.P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. - JETP 64, 1191–1194 (1986)

    Google Scholar 

  38. A. Börzsönyi, Z. Heiner, M.P. Kalashnikov, A.P. Kovács, K. Osvay, Dispersion measurement of inert gases and gas mixtures at 800 nm. Appl. Opt. 47, 4856–4863 (2008)

    Article  ADS  Google Scholar 

  39. P.J. Leonard, Dispersion measurement of inert gases and gas mixtures at 800 nm. At. Data Nucl. Data Tables 14, 21–37 (1974)

    Article  ADS  Google Scholar 

  40. H.J. Lehmeier, W. Leupacher, A. Penzkofer, Nonresonant third order hyperpolarizability of rare gases and N\(_2\) determined by third harmonic generation. Opt. Commun. 56, 67–72 (1985)

    Article  ADS  Google Scholar 

  41. X.F. Li, A. L’Huillier, M. Ferray, L.A. Lompré, G. Mainfray, Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989)

    Article  ADS  Google Scholar 

  42. J.K. Koga, N. Naumova, M. Kando, L.N. Tsintsadze, K. Nakajima, S.V. Bulanov, H. Dewa, H. Kotaki, T. Tajima, Fixed blueshift of high intensity short pulse lasers propagating in gas chambers. Phys. Plasmas 7, 5223–5231 (2000)

    Article  ADS  Google Scholar 

  43. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, San Diego, 2003)

    Google Scholar 

  44. A. L’Huillier, Ph Balcou, S. Candel, K.J. Schafer, K.C. Kulander, Calculations of high-order harmonic-generation processes in xenon at 1064 nm. Phys. Rev. A 46, 2778–2790 (1992)

    Article  ADS  Google Scholar 

  45. H. Dachraoui, T. Auguste, A. Helmstedt, P. Bartz, M. Michelswirth, N. Mueller, W. Pfeiffer, P. Salières, U. Heinzmann, Interplay between absorption, dispersion and refraction in high-order harmonic generation. J. Phys. B 42, 175402 (2009)

    Article  ADS  Google Scholar 

  46. V. Tosa, H.T. Kim, I.J. Kim, C.H. Nam, High-order harmonic generation by chirped and self-guided femtosecond laser pulses. I. spatial and spectral analysis. Phys. Rev. A 71, 063807 (2005)

    Article  ADS  Google Scholar 

  47. C.T. Chantler, K. Olsen, R.A. Dragoset, J. Chang, A.R. Kishore, S.A. Kotochigova, D.S. Zucker, X-ray Form Factor, Attenuation and Scattering Tables (version 2.1). (National Institute of Standards and Technology, Gaithersburg, 2005)

    Google Scholar 

  48. B.L. Henke, E.M. Gullikson, J.C. Davis, X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV,   Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993)

    Google Scholar 

  49. C. Jin, A.T. Le, C.D. Lin, Analysis of effects of macroscopic propagation and multiple molecular orbitals on the minimum in high-order harmonic generation of aligned CO\(_2\). Phys. Rev. A 83, 053409 (2011)

    Article  ADS  Google Scholar 

  50. C. Jin, J.B. Bertrand, R.R. Lucchese, H.J. Wörner, P.B. Corkum, D.M. Villeneuve, A.T. Le, C.D. Lin, Intensity dependence of multiple-orbital contributions and shape resonance in high-order harmonic generation of aligned N\(_2\) molecules. Phys. Rev. A 85, 013405 (2012)

    Article  ADS  Google Scholar 

  51. A.T. Le, R.R. Lucchese, C.D. Lin, Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses. Phys. Rev. A 82, 023814 (2010)

    Article  ADS  Google Scholar 

  52. C.B. Madsen, L.B. Madsen, High-order harmonic generation from arbitrarily oriented diatomic molecules including nuclear motion and field-free alignment. Phys. Rev. A 74, 023403 (2006)

    Article  ADS  Google Scholar 

  53. C. Figueira de Morisson Faria, B.B. Augstein, Molecular high-order harmonic generation with more than one active orbital: Quantum interference effects. Phys. Rev. A, 81, 043409 (2010)

    Google Scholar 

  54. C. Jin, H.J. Wörner, V. Tosa, A.T. Le, J.B. Bertrand, R.R. Lucchese, P.B. Corkum, D.M. Villeneuve, C.D. Lin, Separation of target structure and medium propagation effects in high-harmonic generation. J. Phys. B 44, 095601 (2011)

    Article  ADS  Google Scholar 

  55. A.E. Siegman, Lasers (University Science, Mill Valley, 1986)

    Google Scholar 

  56. V. Tosa, K.T. Kim, C.H. Nam, Macroscopic generation of attosecond-pulse trains in strongly ionized media. Phys. Rev. A 79, 043828 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Jin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jin, C. (2013). Theoretical Tools. In: Theory of Nonlinear Propagation of High Harmonics Generated in a Gaseous Medium. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01625-2_2

Download citation

Publish with us

Policies and ethics