Skip to main content

Fusarial Toxins: Secondary Metabolites of Fusarium Fungi

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 228

Abstract

Different types of fungi, belonging primarily to five genera (viz., Alternaria, Aspergillus, Cladosporium, Penicillium, and Fusarium), produce secondary metabolites that are called mycotoxins. There are also other genera, (viz., Chaetomium, Claviceps, Diplodia, Myrothecium, Phoma, Phomopsis, Pithomyces, and Stachybotrys) that contain mycotoxin-producing fungi. Under favorable environmental conditions, when temperature and moisture are suitable, fungi proliferate and may produce secondary metabolites. These products have no biochemical significance for their own growth and development. The functions of mycotoxins have not been clearly established, but they are believed to play a role in eliminating other competing microorganisms in the same environment. They are also believed to help parasitic fungi invade host tissues. Toxigenic molds are known to produce one or more secondary metabolites, but not all molds are toxigenic and not all secondary metabolites from molds are toxic (Brase et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbes S, Ben Salah-Abbes J, Ouanes Z, Houas Z, Othman O, Bacha H, Abdel-Wahhab MA, Oueslati R (2006) Preventive role of phyllosilicate clay on the immunological and biochemical toxicity of zearalenone in balb/c mice. Int Immunopharmacol 6:1251–1258

    Article  CAS  Google Scholar 

  • Abramson D, Clear RM, Gaba D, Smith DM, Patrick SK, Saydak D (2001) Trichothecene and moniliformin production by Fusarium species from Western Canadian wheat. J Food Prot 64(8):1220–1225

    CAS  Google Scholar 

  • Ahamed S, Foster JS, Bukovsky A, Wimalasena J (2001) Signal transduction through the ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Mol Carcinog 30:88–98

    Article  CAS  Google Scholar 

  • Bacha H, Chekir L, Ellouz F, Hadidane R, Creppy EE (1993) Effects of zearalenone on fertilization and gestation in rats. In: Scudamore KA (ed) Proceedings of the UK workshop, occurrence and significance of mycotoxin. The University of West London, Central Sciences Laboratory, London, pp 258–262

    Google Scholar 

  • Battilani P, Costa LG, Dossena A, Gullino ML, Marchelli R, Galaverna G, Pietri A, Dall’Asta C, Giorni P, Spadaro D, Gualla A (2009) Scientific/technical report submitted to EFSA CFP/EFSA/CONTAM/2008/01 Scientific information on mycotoxins and natural plant toxicants. 1–467

    Google Scholar 

  • Bermudez AJ, Ledoux DR, Rottinghaus GE (1995) Effects of Fusarium moniliforme culture material containing known levels of fumonisin B1 in ducklings. Avian Dis 39:879–886

    Article  CAS  Google Scholar 

  • Berthiller F, Dall’Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R (2005) Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography–tandem mass spectrometry. J Agric Food Chem 53:3421–3425

    Article  CAS  Google Scholar 

  • Berthiller F, Werner U, Sulyok M, Krska R, Hauser MT, Schuhmacher R (2006) Liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit Contam 23:1194–1200

    Article  CAS  Google Scholar 

  • Berthiller F, Sulyok M, Krska R, Schuhmacher R (2007) Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. Int J Food Microbiol 119:33–37

    Article  CAS  Google Scholar 

  • Berthiller F, Schuhmacher R, Adam G, Krska R (2009) Formation, determination and significance of masked and other conjugated mycotoxins. Anal Bioanal Chem 395:1243–1252

    Article  CAS  Google Scholar 

  • Bhatnagar D, Rajesekaran K, Payne GA, Brown RI, Ye J, Cleveland TE (2008) The ‘omics’ tools: genomics, proteomics, metabolomics and their potential for solving the aflatoxin contamination problem. World Mycotoxin J 1:1–10

    Google Scholar 

  • Blandino M, Reyneri A, Vanara F (2009) Effect of sowing time on toxigenic fungal infection and mycotoxin contamination of maize kernels. J Phytopathol 157:7–14

    Article  CAS  Google Scholar 

  • Brase S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109:3903–4399

    Article  CAS  Google Scholar 

  • Bryden WL (2009) Mycotoxins and mycotoxicoses: significance, occurrence and mitigation in the food chain. In: Ballantyne B, Marrs T, Syversen T (eds) General and applied toxicology, 3rd edn. Wiley, Chichester, pp 3529–3553

    Google Scholar 

  • Bryden WL (2012) Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol 173:134–158

    Article  CAS  Google Scholar 

  • CAST (2003) Mycotoxins—risk in plant, animal and human systems, Task Force Report, No 139. Council for Agricultural Science and Technology, Ames, IA, pp 1–191

    Google Scholar 

  • Chen LY, Tian XL, Yang B (1990) A study on the inhibition of rat myocardium glutathione peroxidase and glutathione reductase by moniliformin. Mycopathologia 110:119–124

    Article  CAS  Google Scholar 

  • Chu FS, Li GY (1994) Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the Peopleʼs Republic of China in regions with high incidences of esophageal cancer. Appl Environ Microbiol 60:847–852

    CAS  Google Scholar 

  • Conner MW, de Camargo J, Punyarit P, Reingropitak S, Rogers AE, Newborne PM (1986) Toxicity of anguidine in mice. Fundam Appl Toxicol 7:153–164

    Article  CAS  Google Scholar 

  • Creppy EE (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127:19–28

    Article  CAS  Google Scholar 

  • Dänicke S (2002) Prevention and control of mycotoxins in the poultry production chain: a European view. World’s Poultry Sci J 58:451–474

    Article  Google Scholar 

  • Dänicke S, Döll S, Goyarts T, Valenta H, Ueberschär KH, Flachowsky G (2008) Zur Beurteilung des Vorkommens der Fusarium-Toxine Deoxynivalenol (DON) und Zearalenon (ZON) sowie ihrer Metaboliten in physiologischen Substraten des Schweins. Tierärztl Prax 36:35–47

    Google Scholar 

  • De Hoog GS, Garro J, Gene J, Figueras MJ (2000) Atlas of clinical fungi. Centraalbureau Voor Schimmelcultures, Utrecht

    Google Scholar 

  • De Nus M, Rombouts F, Notermans S (1996) Fusarium molds and their mycotoxins. J Food Saf 16:15–58

    Article  Google Scholar 

  • Degen GH (2011) Tools for investigating workplace-related risks for Mycotoxin exposure. World Mycotoxin J 4:315–327

    Article  Google Scholar 

  • Devegowda G, Reddy NB, Shashidhara RG (2004) Abillity of modified glucomannan to sequestrate T-2 toxin in the gastrointesinal tract of chicken. Asian Austral J Anim Sci 17(2):259

    Google Scholar 

  • D’Mello J, MacDonald AMC, Postel D, Dijksma W, Dujardin A, Placinta C (1998) Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur J Plant Pathol 104:741–751

    Article  Google Scholar 

  • Döll S, Dänicke S (2011) The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Prev Vet Med 102:132–145

    Article  Google Scholar 

  • Dowd PF (1998) Involvement of arthropods in the establishment of mycotoxigenic fungi under field conditions. In: Sinha KK, Bhatnagar D (eds) Mycotoxins in agriculture and food safety. Marcel Dekker, New York, pp 307–350

    Google Scholar 

  • EFSA (2004a) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to deoxynivalenol (DON) as undesirable substance in animal feed. EFSA J 73:1–41

    Google Scholar 

  • EFSA (2004b) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to zearalenone as undesirable substance in animal feed. EFSA J 89:1–35

    Google Scholar 

  • EFSA (2005) Opinion of the scientific panel on contaminants in food chain on a request from the commission related to fumonisins as undesirable substances in animal feed. EFSA J 235:1–32

    Google Scholar 

  • EFSA (2011a) Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J 9(6):2197

    Google Scholar 

  • EFSA (2011b) Scientific opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J 9(12):2481

    Google Scholar 

  • Engelhardt JA, Carlton WW, Tuite JF (1989) Toxicity of Fusarium moniliforme var. subglutinans for chicks, ducklings, and turkey poults. Avian Dis 33(2):357–360

    Article  CAS  Google Scholar 

  • Eriksen GS (2003) Metabolism and toxicity of trichothecenes. Acta Univ Agric Suec Agrar 400:1–38

    Google Scholar 

  • Fotso J, Leslie JF, Smith JS (2002) Production of beauvericin, moniliformin, fusaproliferin, and fumonisins B1, B2, and B3 by fifteen ex-type strains of Fusarium species. Appl Environ Microbiol 68(10):5195–5197, 33 ref

    Article  CAS  Google Scholar 

  • Fuchs E, Binder EM, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecens by the bacterial strain BBSH 797. Food Addit Contam 19(4):379–386

    Article  CAS  Google Scholar 

  • Gareis M, Bauer J, Thiem J, Plank G, Grabley S, Gedek B (1990) Cleavage of zearalenone-glycoside, a “masked” mycotoxin, during digestion in swine. J Vet Med B 37:236–240

    Article  CAS  Google Scholar 

  • Gathercole PS, Thiel PG, Hofmeyr JH (1986) Inhibition of pyruvate dehydrogenase complex by moniliformin. Biochem J 233:719–723

    CAS  Google Scholar 

  • Gelderblom WCA, Semple E, Marasas WFO, Farber E (1992) The cancer-initiating potential of the fumonisin B mycotoxins. Carcinogenesis 13:433–437

    Article  CAS  Google Scholar 

  • Glenn AE (2007) Mycotoxigenic Fusarium species in animal feed. Anim Feed Sci Technol 137:213–240

    Google Scholar 

  • Golinski P, Kiecana I, Mielniczuk E, Kaczmarek Z, Kostecki M, Tomczak M (2002) Moniliformin accumulation in kernels of oats used for food and feed purposes. Mycotoxin Res 18(2):67–76

    Article  CAS  Google Scholar 

  • Guzman RE, Casteel SW (1994) Fumonisin mycotoxins: their origin and effects on livestock. Prof Anim Sci 10:124–129

    Google Scholar 

  • Huang C, Dickman M, Henderson G, Jones C (1995) Repression of protein kinase C and stimulation of cyclic AMP response elements by fumonisin, a fungal encoded toxin which is a carcinogen. Cancer Res 55:1655–1659

    CAS  Google Scholar 

  • Humpf HU, Voss KA (2004) Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol Nutr Food Res 48:255–269

    Article  CAS  Google Scholar 

  • Hussein HS, Brasel JM (2001) Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology 167:101–134

    Article  CAS  Google Scholar 

  • Jakic-Dimic D, Nesic K (2009) Mycotoxins in feed. In: Proceedings of the XIII symposium feed technology. Novi Sad, pp 90–101

    Google Scholar 

  • Jakic-Dimic D, Nesic K, Petrovic M (2009) Mycotoxins in feed for pigs and poultry. Biotechnol Anim Husbandry 25(5–6):1149–1154

    Google Scholar 

  • Jakic-Dimic D, Nesic K (2011a) Mycotoxins in dairy cows. In: Proceedings of the 19th international congress of Mediterranean federation of health and production of ruminants, Belgrade, Serbia, pp 230–235

    Google Scholar 

  • Jakic-Dimic D, Nesic K (2011b) Mycotoxins in feed for poultry. In: Proceedings of the 4th international congress on food and nutrition and MycoRed 2nd Mediterranean workshop on mycotoxins and toxigenic fungi, Istanbul, Turkey, p 229

    Google Scholar 

  • Jakic-Dimic D, Nesic K, Savic B, Keckes J, Pisinov B (2010) Presence of fungi in poultry feed and effects of contaminants on health status. In: Proceedings of the XIV international symposium feed technology. Novi Sad, Serbia, pp 248–253

    Google Scholar 

  • JECFA (2000) Zearalenone. In: Joint FAO/WHO Expert Committee on Food Additives (ed) Safety evaluation of certain food additives and contaminants. WHO/FAO Food additives Series 44. IPCS—International Programme on Chemical Safety. WHO, Geneva

    Google Scholar 

  • Jenkins GR, Tolleson WH, Newkirk DK, Roberts DW, Rowland KL, Saheki T, Kobayashi K, Howard PC, Melchior WB (2000) Identification of fumonisin B1 as an inhibitor of argininosuccinate synthetase using fumonisin affinity chromatography and in vitro kinetic studies. J Biochem Mol Toxicol 14:320–328

    Article  CAS  Google Scholar 

  • Jones R, Duncan H, Hamilton P (1981) Planting date, harvest date, irrigation effects on infection and aflatoxin production by Aspergillus flavus in field corn. Phytopathology 71:810–816

    Article  CAS  Google Scholar 

  • Jouany J (2007) Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim Feed Sci Technol 137:342–362

    Article  CAS  Google Scholar 

  • Krska R, Welzig E, Boudra H (2007) Analysis of Fusarium toxins in feed. Anim Feed Sci Technol 137(3–4):241–264

    Article  CAS  Google Scholar 

  • Krska R, Schubert-Ulrich P, Molinelli A, Sulyok M, McDonald S, Crews C (2008) Mycotoxin analysis: an update. Food Addit Contam 25:152–163

    Article  CAS  Google Scholar 

  • Kuiper-Goodman T (2004) Risk assessment and risk management of mycotoxins in food. In: Magan N, Olsen M (eds) Mycotoxins in food. Detection and control. Woodhead Publishing Limited, Cambridge, ISBN 1 855737337, pp 3–31

    Google Scholar 

  • Logrieco A, Mulé G, Moretti A, Bottalico A (2002) Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol 108:597–609

    Article  CAS  Google Scholar 

  • Maragos CM, Busman M (2010) Rapid and advanced tools for mycotoxin analysis: a review. Food Addit Contam A 27:688–700

    Article  CAS  Google Scholar 

  • Minervini F, Giannoccaro A, Cavallini A, Visconti A (2005) Investigations on cellular proliferation induced by zearalenone and its derivatives in relation to the estrogenic parameters. Toxicol Lett 159:272–283

    Article  CAS  Google Scholar 

  • Moore DD, Chin LJ, Bryden WL (2008) Contamination of Australian animal feedstuffs and forages with mycotoxins. Proc Aust Soc Anim Prod 27:35

    Google Scholar 

  • Munkvold GP (2003) Cultural and genetic approaches to managing mycotoxins in maize. Ann Rev Phytopathol 41:99–116

    Article  CAS  Google Scholar 

  • Munkvold GP, Desjardins AE (1997) Fumonisins in maize: can we reduce the occurrence? Plant Dis 81:556–565

    Article  CAS  Google Scholar 

  • Nesic K (2003) Efficacy of mineral and organic adsorbent in alleviating the toxic effects of zearalenone on the performance and pathomorphological changes in piglets. MSc theses, Faculty of Veterinary Medicine of Serbia, Belgrade University, pp 1–76

    Google Scholar 

  • Nesic K, Resanovic R, Nesic V, Sinovec Z (2008a) Efficacy of mineral and organic adsorbent in alleviating harmful effects of zearalenone on pigs performance and health. Acta Vet Beograd 58(2–3):211–219

    Google Scholar 

  • Nesic K, Stevanovic J, Sinovec Z (2008b) Efficacy of mineral and organic adsorbent in alleviating harmful effects of zearalenone on blood serum protein status of piglets. Vet Glas 62(1–2):25–34

    Article  Google Scholar 

  • Nesic K, Resanovic R, Jakic-Dimic D, Nesic V (2011) Efficiency of various feed additives on the performance of broilers treated with T-2 toxin. Biotechnol Anim Husbandry 2(3, Book 2):705–711

    Article  Google Scholar 

  • Nesic V, Resanovic R, Marinkovic D, Nesic K, Lazarevic M, Nesic S, Aleksic-Kovacevic S (2012) Efficacy of T-2 toxin detoxifying agent in broiler chickens. Acta Vet 62(2–3):171–182

    Article  Google Scholar 

  • Omurtag GZ, Tozan A, Sirkecioglu O, Kumbarac V, Rollas S (2007) Occurrence of diacetoxyscirpenol (anguidine) in processed cereals and pulses in Turkey by HPLC. Food Control 18(8):970–974

    Article  CAS  Google Scholar 

  • Pestka JJ (1994) Application of immunology to the analysis and toxicity assessment of mycotoxins. Food Agric Immunol 6:219–234

    Article  CAS  Google Scholar 

  • Pettersson H (1996) Mycotoxins in Scandinavian cereals. In: Proceedings of International III Seminar: Mycotoxins in Food, Raw Materials and Industrial Fodders, Bydgoszcz, Poland, pp 14–20

    Google Scholar 

  • Pittet A (1998) Natural occurence of mycotoxins in foods and feeds—an updated review. Rev Méd Vet 149:479–492

    CAS  Google Scholar 

  • Prelusky DB, Scott PM, Trenholm H, Lawrence GA (1990) Minimal transmission of zearalenone to milk of dairy cows. J Environ Sci Health B 25:87–103

    Article  CAS  Google Scholar 

  • Pronk MEJ, Schothorst RC, Van Egmond HP (2002) Toxicology and occurrence of nivalenol, fusarenon X, diacetoxyscirpenol, neosolaniol and 3- and 15-acetyldeoxynivalenol: a review of six trichothecenes. RIVM Report 388802024

    Google Scholar 

  • Rahmani A, Jinap S, Soleimany F (2009) Qualitative and quantitative analysis of mycotoxins. Compr Rev Food Sci Food Saf 8:202–251

    Article  CAS  Google Scholar 

  • Ramljak D, Calvert RJ, Wiesenfeld PW, Diwan BA, Catipovic B, Marasas WF, Victor TC, Anderson LM, Gelderblom WC (2000) A potential mechanism for fumonisin B(1)-mediated hepatocarcinogenesis: cyclin D1 stabilization associated with activation of Akt and inhibition of GSK-3beta activity. Carcinogenesis 21:1537–1546

    Article  CAS  Google Scholar 

  • Reams RY, Thacker HL, Harrington DD, Novilla MN, Rottinghaus GE, Bennett GA, Horn J (1997) A sudden death syndrome induced in poults and chicks fed diets containing Fusarium fujikuroi with known concentrations of moniliformin. Avian Dis 41:20–35

    Article  CAS  Google Scholar 

  • Rheeder JP, Marasas WFO, Thiel PG, Syndenham EW, Shephard GS, van Schalkwyk DJ (1992) Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82:353–357

    Article  Google Scholar 

  • Richard J (2007) Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol 119:3–10

    Article  CAS  Google Scholar 

  • Ryu JC, Ohtsubo K, Izumiyama N, Nakamura K, Tanaka T, Yamamura H, Ueno Y (1988) The acute and chronic toxicities of nivalenol in mice. Fundam Appl Toxicol 11(1):38–47

    Article  CAS  Google Scholar 

  • Schollenberger M, Müller HM, Rüfle M, Suchy S, Planck S, Drochner W (2006) Natural occurrence of 16 fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 161:43–52

    Article  Google Scholar 

  • Schollenberger M, Drochner W, Muller HM (2007) Fusarium toxins of the scirpentriol subgroup: a review. Mycopathologia 164(3):101–118

    Article  CAS  Google Scholar 

  • Schroeder JJ, Crane HM, Xia J, Liotta DC, Merrill AH (1994) Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1. A molecular mechanism for carcinogenesis associated with Fusarium moniliforme. J Biol Chem 269:3475–3481

    CAS  Google Scholar 

  • Schütt F, Nirenberg HI, Deml G (1998) Moniliformin production in the genus Fusarium. Mycotoxin Res 14:35–40

    Article  Google Scholar 

  • Seeling K, Dänicke S (2005) Relevance of the Fusarium toxins deoxynivalenol and zearalenone in ruminant nutrition—a review. J Anim Feed Sci 14:3–40

    Google Scholar 

  • Smith JE, Solomons GL (1994) Mycotoxins in human nutrition and health. EC Directorate General XII, Science Research and Development. EUR 16048 EN

    Google Scholar 

  • Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 4:195–209

    Article  Google Scholar 

  • Thiel PG, Marasas WFO, Sydenham EW, Shephard GS, Gelderblom WCA (1992) The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia 117:3–9

    Article  CAS  Google Scholar 

  • Trenholm HL, Hamilton RM, Friend DW, Thompson BK, Hartin KE (1984) Feeding trials with effects on swine, poultry, and dairy cattle. J Am Vet Med Assoc 185:527–531

    CAS  Google Scholar 

  • Trenholm HL, Friend DW, Hamilton RMG, Thompson BK, Hartin KE (1986) Incedence and toxicology of deoxynivalenol as an emerging mycotoxin problem. In: Proceedings of VI International Conference on the Mycoses. Pan American Health Organization, Washington, DC

    Google Scholar 

  • Ueno Y (1984) Toxicological features of T-2 toxin and related trichothecenes. Fundam Appl Toxicol 4:124–132

    Article  CAS  Google Scholar 

  • Uhlig S, Jestoi M, Parikka P (2007) Fusarium avenaceum. The North European situation. Int J Food Microbiol 119(1–2):17–24, Mycotoxins from the field to the table

    Article  CAS  Google Scholar 

  • Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 266:14486–14490

    CAS  Google Scholar 

  • Wang E, Ross FP, Wilson TM, Riley RT, Merrill AH Jr (1992) Increases in serum sphingosine and sphinganine and decreases in complex sphingolipids in ponies given feed containing fumonisins, mycotoxins produced by Fusarium moniliforme. J Nutr 122:1706–1716

    CAS  Google Scholar 

  • Whitaker TB (2003) Detecting mycotoxins in agricultural commodities. Mol Biotechnol 23:61–71

    Article  CAS  Google Scholar 

  • Whitaker TB (2006) Sampling foods for mycotoxins. Food Addit Contam 23:50–61

    Article  CAS  Google Scholar 

  • Wu F, Miller JD, Casman EA (2004) Bt corn and mycotoxin reduction: economic impacts in the United States and the developing world. J Toxicol Toxin Rev 23:397–424

    Article  CAS  Google Scholar 

  • Yeung JM, Wang HY, Prelusky DB (1996) Fumonisin B1 induces protein kinase C translocation via direct interaction with diacylglycerol binding site. Toxicol Appl Pharmacol 141:178–184

    CAS  Google Scholar 

  • Yoshizawa T, Yamashita A, Luo Y (1994) Fumonisin occurence in corn from high and low risk areas for human esophageal cancer in China. Appl Environ Microbiol 60:1626–1629

    CAS  Google Scholar 

  • Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    Article  CAS  Google Scholar 

  • Yu Z, Zhang L, Wu D, Liu F (2005) Anti-apoptotic action of zearalenone in MCF-7 cells. Ecotoxicol Environ Saf 62:441–446

    Article  CAS  Google Scholar 

  • Zhang H, Li JL (1989) Study on toxicological mechanism of moniliformin. Wei Sheng Wu Xue Bao 29:93–100

    CAS  Google Scholar 

  • Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Publication of this review was supported by the project of Serbian Ministry of science and education No. III 46009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenija Nesic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nesic, K., Ivanovic, S., Nesic, V. (2014). Fusarial Toxins: Secondary Metabolites of Fusarium Fungi. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 228. Reviews of Environmental Contamination and Toxicology, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-01619-1_5

Download citation

Publish with us

Policies and ethics