Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1121 Accesses

Abstract

The water balance model, which was used to simulate the water balance and water distribution, consists of several modules, each describing one part of the hydrological system: Bare soil evaporation, transpiration by vegetation, processes related to ice and snow (snow accumulation and snow melt), surface runoff, groundwater recharge, and finally river runoff at the catchment outlet. These are described in the next sections, then the model sensitivity and uncertainty is assessed to identify the most important parameters for which the according input dataset are described. Before applying the water balance model, its accuracy is evaluated with different measures and against other datasets and model results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the computing time was limited, a factorial set up could have been introduced, where only a given number of ‘levels’ are chosen for each parameter or possible interaction among factors are examined (cf. [50, 52]). However, this was not necessary as the uncertainty was only run for one point and not the raster data set.

  2. 2.

    Moderate-Resolution Imaging Spectroradiometer.

  3. 3.

    Tropical Rainfall Measuring Mission.

  4. 4.

    http://lpdaac.usgs.gov/get_data, accessed 15.07.2009.

  5. 5.

    http://earthexplorer.usgs.gov/, accessed 15.07.2009.

  6. 6.

    http://glcf.umiacs.umd.edu/data/srtm/index.shtml, accessed 31.01.2008.

  7. 7.

    The data is available for over 9,000 stations, including many airport and additional city locations worldwide, and provides daily summaries for mean, min, max, and dewpoint temperature, wind speed, pressure, visibility, precipitation and snowdepth (http://hurricane.ncdc.noaa.gov/cdo/info.html#GSOD, accessed 08.09.2011).

  8. 8.

    http://glovis.usgs.gov/, accessed 4.10.2009.

  9. 9.

    http://www.worldclim.org/, accessed 24.05.2010.

  10. 10.

    http://mirador.gsfc.nasa.gov/collections/TRMM_3B43__006.shtml, accessed 08.09.2011.

  11. 11.

    http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?project=TRMM&tree=project, accessed 24.05.2010.

References

  1. Bremicker, M., Luce, A., Haag, I., & Sieber, A. (2005). Das Wasserhaushaltsmodell Larsim: Modellgrundlagen (80 p) Retrieved 15 May, 2011, from http://www.hvz.baden-wuerttemberg.de/pdf/LARSIM_DE_2005-06-24.pdf.

  2. Uhlenbrook, S. (1999). Untersuchung und Modellierung der Abflussbildung in einem mesoskaligen Einzugsgebiet (201 p). Institut für Hydrologie der Universität Freiburg i. Br., Freiburg (Freiburger Schriften zur Hydrologie, 10).

    Google Scholar 

  3. Beven, K. J. (2001). How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences, 5(1), 1–12.

    Article  Google Scholar 

  4. Aerts, J. C., Kriek, M., & Schepel, M. (1999). Spatial tools for river basins and environment and analysis of management options (STREAM): Set up and requirements. Physics and Chemistry of the Earth Part B Hydrology Oceans and Atmosphere, 24(6), 591–595.

    Article  Google Scholar 

  5. Bäse, F. (2005). Beurteilung der Parametersensitivität und der Vorhersagesicherheit am Beispiel des hydrologischen Modells J2000 (102 p). Unpublished diploma thesis, Friedrich-Schiller Universität Jena.

    Google Scholar 

  6. Bouwer, L. M., Aerts, J. C., Droogers, P., & Dolman, A. J. (2006). Detecting the long-term impacts from climate variability and increasing water consumption on runoff in the Krishna river basin (India). Hydrology and Earth System Sciences, 10, 703–713.

    Article  Google Scholar 

  7. Glugla, G. & Fürtig, G. (1997). Dokumentation zur Anwendung des Rechenprogramms ABIMO (37 p). Bundesanstalt für Gewässerkunde, Berlin.

    Google Scholar 

  8. Meßer, J. (1997). Auswirkungen der Urbanisierung auf die Grundwasserneubildung im Ruhrgebiet unter besonderer Berücksichtigung der Castroper Hochfläche und des Stadtgebietes Herne, Essen (58 p). Deutsche Montan Technologie GmbH (DMT-Berichte aus Forschung und Entwicklung).

    Google Scholar 

  9. Meßer, J. (2008). Ein vereinfachtes Verfahren zur Berechnung der flächendifferenzierten Grundwasserneubildung in Mitteleuropa (60 p). Lippe: Lippe Wassertechnik.

    Google Scholar 

  10. Haase, D. (2009). Effects of urbanisation on the water balance: A long-term trajectory. Environmental Impact Assessment Review, 29, 211–219.

    Article  Google Scholar 

  11. Schmidt, G., Gretzschel, O., Volk, M., & Uhl, M. (2003). Konzept zur skalenspezifischen Modellierung des Wasser- und Stoffhaushaltes im Projekt FLUMAGIS: A concept for the scale-specific simulation of water-bound material fluxes in the project FLUMAGIS. In K. Hennrich, M. Rode, A. Bronstert (Eds.), 6. Workshop zur großskaligen Modellierung in der Hydrologie—Flussgebietsmanagement (pp. 7–20). Kassel: University Press.

    Google Scholar 

  12. Glugla, G., Jankiewicz, P., Rachimow, C., Lojek, K., Richter, K., Fürtig, G., & Krahe, P. (2003). Wasserhaushaltsverfahren zur Berechnung vieljähriger Mittelwerte der tatsächlichen Verdunstung und des Gesamtabflusses (102 p). BfG, Koblenz (BfG-Bericht, 1342).

    Google Scholar 

  13. Kite, G. (2000). Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation. Journal of Hydrology, 229, 59–69.

    Article  Google Scholar 

  14. Simonneaux, V., Duchemin, B., Helson, D., Er-Raki, S., Olioso, A., & Chehbouni, A. (2008). The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in Central Morocco. International Journal of Remote Sensing, 29(1), 95–116.

    Article  Google Scholar 

  15. Zhao, C., Nan, Z., & Cheng, G. (2005). Methods for estimating irrigation needs of spring wheat in the middle Heihe Basin, China. Agricultural Water Management, 75, 54–70.

    Article  Google Scholar 

  16. Armbruster, V. (2002). Grundwasserneubildung in Baden-Württemberg (140 p). Dissertation. Institut für Hydrologie der Universität Freiburg i. Br., (Freiburger Schriften zur Hydrologie, 17).

    Google Scholar 

  17. Merz, R., Blöschl, G., & Parajka, J. (2006). Spatio-temporal variability of event runoff coefficients. Journal of Hydrology, 331(3–4), 591–604.

    Article  Google Scholar 

  18. Huintjes, E., Li, H., Sauter, T., Li, Z., & Schneider, C. (2010). Degree-day modelling of the surface mass balance of Urumqi Glacier No. 1, Tian Shan, China. The Cryosphere Discussions, 4, 207–232.

    Article  Google Scholar 

  19. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and water assessment tool theoretical documentation: Version 2005 (476 p). Temple: Grassland, Soil and Water Research Laboratory.

    Google Scholar 

  20. Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2010). Spatial uncertainty assessment in modelling reference evapotranspiration at regional scale. Hydrology and Earth System Sciences, 14(11), 2319–2327.

    Article  Google Scholar 

  21. Aguilar, C., & Polo, M. J. (2011). Calculation of reference evapotranspiration surfaces in distributed hydrological modelling at different temporal scales. Hydrology and Earth System Sciences Discussions, 8, 4813–4850.

    Article  Google Scholar 

  22. Contreras, S., Jobbágy, E. G., Villagra, P. E., Nosetto, M. D., & Puigdefábregas, J. (2011). Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. Journal of Hydrology, 397(1–2), 10–22.

    Google Scholar 

  23. Allen, R. G. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements (300 p). Rome (FAO irrigation and drainage paper, 56): Food and Agriculture Organisation of the United Nations.

    Google Scholar 

  24. DVWK (1996). Ermittlung der Verdunstung von Land- und Wasserflächen: DVWK-Merkblätter zur Wasserwirtschaft (135 p). Wirtschafts- und Verl.-Ges. Gas und Wasser, Bonn (Gas und Wasser, 238).

    Google Scholar 

  25. Iqbal, M. (1983). An introduction to solar radiation (390 p). Toronto: Academic Press.

    Google Scholar 

  26. Schulla, J. (1997). Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaänderungen (163 p). Dissertation, Dresden (Zürcher Geographische Schriften, 69).

    Google Scholar 

  27. Allen, R. G. (1986). A Penman for all seasons. Journal of Irrigation and Drainage Engineering, 112(4), 348–368.

    Article  Google Scholar 

  28. Monteith, J. L. (1965). Evaporation and environment. In G. E. Fogg (Ed.), Symposium of the society for experimental biology: The state and movement of water in living organisms (Vol. 19, pp. 205–234). New York: Academic Press.

    Google Scholar 

  29. Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A Mathematical and Physical Science, 193(1032), 120–145.

    Google Scholar 

  30. Hurtalová, T., Matejka, F., Roznovsky, J., & Janous, D. (2003). Aerodynamic resistance of spruce forest stand in relation to roughness length and airflow. Contributions to Geophysics and Geodesy, 33(3), 147–160.

    Google Scholar 

  31. Lindroth, A. (1993). Aerodynamic and canopy resistance of short-rotation forest in relation to leaf area index and climate. Boundary-Layer Meteorology, 66, 265–279.

    Article  Google Scholar 

  32. Tiyip, T., Taff, G. N., Kung, H.-T., & Zhang, F. (2010). Remote sensing assessment of salinisation impacts in the Tarim Basin: The Delta Oasis of the Ugan and Kuqa Rivers. In G. Schneier-Madanes & M.-F. Courel (Eds.), Water and sustainability in arid regions. Bridging the gap between physical and social sciences (pp. 15–32). Dordrecht: Springer Science+Business Media B.V.

    Google Scholar 

  33. Thom, A. S., & Oliver, H. R. (1977). On Penman’s equation for estimating regional evapotranspiration. Quarterly Journal of the Royal Meteorological Society, 103, 345–357.

    Article  Google Scholar 

  34. Vietinghoff, H. (2000). Die Verdunstung freier Wasserflächen: Grundlagen, Einflußfaktoren und Methoden der Ermittlung (113 p). UFO, Atelier für Gestaltung und Verlag, Allensbach (Ufo Naturwissenschaft, 201).

    Google Scholar 

  35. Wimmer, F., Schlaffer, S., Aus der Beek, T., & Menzel, L. (2009). Distributed modelling of climate change impacts on snow sublimation in Northern Mongolia. Advances in Geosciences, 21, 117–124.

    Google Scholar 

  36. Knauf, D. (1976). Die Abflußbildung in schneebedeckten Einzugsgebieten des Mittelgebirges (155 p). Institut für Hydraulik und Hydrologie Darmstadt, Darmstadt (Technische Berichte, 17).

    Google Scholar 

  37. Rango, A., & Martinec, J. (1995). Revisiting the degree-day method for snowmelt computations. Water Resources Bulletin, 31(4), 657–669.

    Article  Google Scholar 

  38. Bagchi, A. K. (1983). Areal value of degree-day factor. Hydrological Sciences Journal/Journal Sciences Hydrologiques, 28(4), 499–511.

    Article  Google Scholar 

  39. Kuusisto, E. (1980). On the values and variability of degree-day melting factor in Finland. Nordic Hydrology, 11, 235–242.

    Google Scholar 

  40. Martinec, J., Rango, A., & Roberts, R. (2008). Snowmelt runoff model (SRM) user’s manual: Edited by Enrique Gómez-Landesa & Max P. Bleiweiss (178 p). Las Cruces: New Mexico State University.

    Google Scholar 

  41. Shin, H. J., Park, M. J., Ha, R., Yi, J. E., Kim, G. S., & Kim, S.-J. (2011). Evaluation of snow melt contribution to streamflow in a heavy snowfall watershed of South Korea using SWAT model. Toledo, Spain: SWAT 2011.

    Google Scholar 

  42. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., & Williams, J. R. (2009). Soil and water assessment tool: Input/output file documentation Version 2009 (604 p). Temple: Grassland, Soil and Water Research Laboratory.

    Google Scholar 

  43. Merz, R., & Blöschl, G. (2004). Regionalisation of catchment model parameters. Journal of Hydrology, 287, 95–123.

    Article  Google Scholar 

  44. Kondo, J., & Yamazaki, T. (1990). A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method. Journal of Applied Meteorology, 29, 375–384.

    Article  Google Scholar 

  45. Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282, 102–115.

    Article  Google Scholar 

  46. Beven, K. J. (1991). Spatially distributed modelling: Conceptual approach to runoff prediction. In D. S. Bowles (Ed.), Recent advances in the modelling of hydrologic systems. Proceedings of the NATO Advanced Study Institute on Recent Advances in the Modelling of Hydrologic Systems, Sintra, Portugal 10–23 July, 1988 (pp. 373–387). Dordrecht: Kluwer.

    Google Scholar 

  47. International Soil Reference and Information Centre (ISRIC) (2011). Soil and terrain database for China. Version 1.0—scale 1:1 million. ISRIC Wageningen. Retrieved from 5 Oct, 2011. http://www.isric.org/data/soil-and-terrain-database-china.

  48. Batjes, N. (2002). Soil parameter estimates for the soil types of the world for use in global and regional modelling (Version 2.1., 46 p). Wageningen: ISRIC Report, 2002/02c, International Food Policy Research Institute and International Soil Reference and Information Centre. Retrieved 25 Mar, 2011, from http://www.isric.eu/isric/webdocs/docs/ISRIC_Report_2002_02c.pdf.

  49. Meinrath, G., & Schneider, P. (2007). Quality assurance for chemistry and environmental science: Metrology from pH measurement to nuclear waste disposal (326 p). Berlin, Heidelberg: Springer.

    Google Scholar 

  50. Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring Assessment, 32, 135–154.

    Article  Google Scholar 

  51. Campolongo, F., Kleijnen, J., & Andres, T. (2004). Screening Methods. In A. Saltelli (Ed.), Sensitivity analysis (pp. 65–80). Chichester: Wiley.

    Google Scholar 

  52. Campolongo, F., Saltelli, A., Sorensen, T., & Tarantola, S. (2004). Hitchhiker’s guide to sensitivity analysis. In A. Saltelli (Ed.), Sensitivity Analysis (pp. 15–47). Chichester: Wiley.

    Google Scholar 

  53. Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H. G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9–10), 645–654.

    Article  Google Scholar 

  54. Harlin, J., & Kung, C.-S. (1992). Parameter uncertainty and simulation of design floods in Sweden. Journal of Hydrology, 137, 209–230.

    Article  Google Scholar 

  55. Frühwirth, R., & Regler, M. (1983). Monte-Carlo-Methoden: Eine Einführung (171 p). Mannheim: Bibliogr. Inst.

    Google Scholar 

  56. Lin, S., Jing, C., Chaplot, V., Yu, X., Zhang, Z., Moore, N., et al. (2010). Effect of DEM resolution on SWAT outputs of runoff sediment and nutrients. Hydrology and Earth System Sciences Discussions, 7, 4411–4435.

    Article  Google Scholar 

  57. Liu, T., Willems, P., Pan, X. L., Bao, A. M., Chen, X., Veroustraete, F., et al. (2011). Climate change impact on water resource extremes in a headwater region of the Tarim basin in China. Hydrology and Earth System Sciences, 15, 3511–3527.

    Article  Google Scholar 

  58. U.S. Geological Survey (2005). Shuttle Radar Topography Mission, version 2, 3-arc second resolution. Global Land Cover Facility, University of Maryland, College Park, Maryland Retrieved 31 Jan, 2008, from http://glcf.umiacs.umd.edu/data/srtm/index.shtml.

  59. U.S. Geological Survey & Japan ASTER Programme (2009). ASTER GDEM Version 1. NASA Land Processes Distributed Active Archive Center, Sioux Falls, Retrieved 15 Jul, 2009, from http://earthexplorer.usgs.gov/.

  60. Aster Validation Team (2009). ASTER global dem validation summary report: ASTER GDEM validation team: METI/ERSDAC, NASA/LPDAAC, USGS/EROS in cooperation with NGA and other collaborators (28 p). Retrieved 19 Oct, 2011, from https://lpdaac.usgs.gov/lpdaac/content/download/4009/20069/version/3/file/ASTER+GDEM+Validation+Summary+Report.pdf.

  61. Albertz, J. (2001). Einführung in die Fernerkundung: Grundlagen der Interpretation von Luft- und Satellitenbildern (249 p). Darmstadt: Wiss. Buchges.

    Google Scholar 

  62. Sabins, F. F. (2007). Remote sensing: Principles and interpretation (494 p). Ill: Waveland Press, Long Grove.

    Google Scholar 

  63. Hengl, T., & Reuter, H. (2011). How accurate and usable is GDEM? A statistical assessment of GDEM using LiDAR data. Geomorphometry, 45–48.

    Google Scholar 

  64. Hirt, C., Filmer, M. S., & Featherstone, W. E. (2010). Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia: Australian Journal of Earth Sciences. Australian Journal of Earth Sciences, 57(3), 337–347.

    Article  Google Scholar 

  65. Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research, 30(4), 1019–1028.

    Article  Google Scholar 

  66. Jacobsen, K. (2010). Comparison of ASTER GDEMs with SRTM Height Models. In R. Reuter (Ed.), 30th EARSeL symposium remote sensing for science, education, and natural and cultural heritage (pp. 521–526). Paris, France: UNESCO.

    Google Scholar 

  67. Wang, G. Q., Zhang, J. Y., Jin, J. L., Pagano, T. C., Calow, R., Bao, Z. X., et al. (2012). Assessing water resources in China using PRECIS projections and a VIC model. Hydrology and Earth System Sciences, 16, 231–232.

    Article  Google Scholar 

  68. Di Luzio, M., Arnold, J. G., & Srinivasan, R. (2005). Effect of GIS data quality on small watershed stream flow and sediment simulations. Hydrological Processes, 19(3), 629–650.

    Article  Google Scholar 

  69. Kienzle, S. (2004). The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives. Transactions in GIS, 8(1), 83–111.

    Article  Google Scholar 

  70. de Vente, J., Poesen, J., Govers, G., & Boix-Fayos, C. (2009). The implications of data selection for regional erosion and sediment yield modelling. Earth Surface Processes and Landforms, 34(15), 1994–2007.

    Article  Google Scholar 

  71. Bosch, D. D., Sheridan, J. M., Batten, H. L., & Arnold, J. G. (2004). Evaluation of the SWAT model on a coastal plain agricultural watershed. Transactions of the American Society of Agricultural Engineers, 47(5), 1493–1506.

    Article  Google Scholar 

  72. Dixon, B., & Earls, J. (2009). Resample or not?! Effects of resolution of DEMs in watershed modelling. Hydrological Processes, 23(12), 1714–1724.

    Article  Google Scholar 

  73. Tulu, M. D. (February, 2005). SRTM DEM suitability in runoff studies (87 p). Retrieved 19 Oct, 2011, from http://www.itc.nl/library/papers_2005/msc/wrem/mesay.pdf.

  74. Terribile, F., Coppola, A., Langella, G., Martina, M., & Basile, A. (2011). Potential and limitations of using soil mapping information to understand landscape hydrology. Hydrology and Earth System Sciences Discussions, 8, 4927–4977.

    Article  Google Scholar 

  75. Bruneau, P., Gascuel-Odoux, C., Robin, P., Merot, P., & Beven, K. J. (1995). Sensitivity to space and time resolution of a hydrological model using digital elevation data. Hydrological Processes, 9, 69–81.

    Article  Google Scholar 

  76. ESRI (2010): ArcGIS, Version 10.0 [Computer program], Redlands, CA.

    Google Scholar 

  77. Autonomous Region Bureau of Surveying and Mapping (2004). Xinjiang-Weiyu’er-Zizhiqu-dituji: Xinjiang Uygur Autonomous Region Atlas (307 p). Beijing: Zhongguo ditu chubanshe.

    Google Scholar 

  78. Bubenzer, O., & Bolten, A. (2008). The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib. Geomorphology, 102, 221–231.

    Article  Google Scholar 

  79. National Oceanic and Atmospheric Administration of the U.S. Department of Commerce National Climatic Data Centre (NOAA NCDC) (2011). Global Summary of the Day Diwopu Station, Station Number 514635, 29.02.1985–31.12.2010. Retrieved 16 May, 2011, from http://www7.ncdc.noaa.gov/CDO/cdo.

  80. National Oceanic and Atmospheric Administration of the U.S. Department of Commerce National Climatic Data Centre (NOAA NCDC) (2011). Global Summary of the Day Fukang Station, Station Number 513650, 28.03.1962–13.05.1997. Retrieved 23 Feb, 2010, from http://www7.ncdc.noaa.gov/CDO/cdo.

  81. National Oceanic and Atmospheric Administration of the U.S. Department of Commerce National Climatic Data Centre (NOAA NCDC) (2011). Global Summary of the Day Shihezi Station, Station Number 513560, 21.08.1956–19.08.1996. Retrieved 23 Feb, 2010, from http://www7.ncdc.noaa.gov/CDO/cdo.

  82. National Oceanic and Atmospheric Administration of the U.S. Department of Commerce National Climatic Data Centre (NOAA NCDC) (2011). Global Summary of the Day Wulumuqi Station, Station Number 514630, 22.08.1956–31.12.2010. Retrieved 16 May, 2011, from http://www7.ncdc.noaa.gov/CDO/cdo.

  83. Peterson, T. C., Easterling, D. R., Karls, T. R., Groisman, P., Nicholls, N., Plummer, N., et al. (1998). Homogeneity adjustments of in situ atmospheric climate data: A review. International Journal of Climatology, 18, 1493–1517.

    Article  Google Scholar 

  84. Dahmen, E. R., & Hall, M. J. (1990). Screening of hydrological data: Tests for stationarity and relative consistency (58 p). ILRI: Wageningen.

    Google Scholar 

  85. Barth, N. C. (2011). Auswertung der Temperatur- und Niederschlagsdaten von 15 Klimastationen im Umkreis von Urumqi (AR Xinjiang, China) (65 p). Heidelberg: Unpublished bachelor thesis, Ruprecht-Karls-Universität.

    Google Scholar 

  86. Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707–721.

    Article  Google Scholar 

  87. U.S. Geological Survey (2012a). Land surface temperature and emissivity daily L3 global 1 km Grid SIN. Retrieved 19 Mar, 2012, from https://lpdaac.usgs.gov/products/modis_products_table/mod11a1.

  88. Ajami, N. K., Gupta, H., Wagener, T., & Sorooshian, S. (2004). Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298, 112–135.

    Article  Google Scholar 

  89. Statistics Bureau of Urumqi (2000). Urumqi Statistical Yearbook 2000 (325 p). China Statistics Press: Beijing

    Google Scholar 

  90. Statistics Bureau of Urumqi (2005). Urumqi Statistical Yearbook 2005 (366 p). China Statistics Press: Beijing

    Google Scholar 

  91. Statistics Bureau of Urumqi (2006). Urumqi Statistical Yearbook 2006 (439 p). China Statistics Press: Beijing

    Google Scholar 

  92. Statistics Bureau of Urumqi (2008). Urumqi Statistical Yearbook 2008 (455 p). China Statistics Press: Beijing

    Google Scholar 

  93. Statistics Bureau of Urumqi (2009). Urumqi Statistical Yearbook 2009 (506 p). Beijing: China Statistics Press

    Google Scholar 

  94. Statistics Bureau of Urumqi (2010). Urumqi Statistical Yearbook 2010 (456 p). Beijing: China Statistics Press

    Google Scholar 

  95. Zhang, W., Ogawa, K., Ye, B., & Yamaguchi, Y. (2000). A monthly stream flow model for estimating the potential changes of river runoff on the projected global warming. Hydrological Processes, 14(10), 1851–1868.

    Article  Google Scholar 

  96. NASA (2011). TRMM Rainfall Product TRMM_3B43, Monthly Average Rainfall, 0.25°×0.25° resolution. Retrieved 19 April, 2012, from http://mirador.gsfc.nasa.gov/collections/TRMM_3B43__006.shtml.

  97. Hartkamp, A. D., Beurs, K., de Stein, A., & White, J. W. (1999). Interpolation techniques for climate variables (26 p). CIMMYT, Mexico, D.F. (NRG-GIS Series, 99-01).

    Google Scholar 

  98. Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P. A. Longley, M. F. Goodchild, D. J. Maguire & D. W. Rhind (Eds.), Geographical information systems. Principles, techniques, management and applications (pp. 481–492). Hoboken, NJ: Wiley.

    Google Scholar 

  99. Yan, J., Chen, X., Luo, G., & Guo, Q. (2006). Temporal and spatial variability response of groundwater level to land use/land cover change in oases of arid areas. Chinese Science Bulletin, 51(1), 51–59

    Google Scholar 

  100. Hunukumbura, P. B., Tachikawa, Y., & Shiiba, M. (2011). Distributed hydrological model transferability across basins with different hydro-climatic characteristics. Hydrological Processes. doi: 10.1002/hyp.8294.

  101. ESRI. (2003). AcrGIS 9 Using ArcGIS Geostatistical Analyst (300 p). Redlands, CA: ESRI.

    Google Scholar 

  102. Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J., & Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Advances in Geosciences, 25, 119–125.

    Article  Google Scholar 

  103. Aguilar, C., Herrero, J., & Polo, M. J. (2010). Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale. Hydrology and Earth System Sciences, 14(12), 2479–2494.

    Article  Google Scholar 

  104. Statistics Bureau of Urumqi (2010). Urumqi Statistical Yearbook 2010 (456 p). Beijing: China Statistics Press.

    Google Scholar 

  105. Burns, I. S., Scott, S. N., Levick, L. R., Semmens, D. J., Miller, S. N., Hernandez, M., et al. (2007). Automated geospatial watershed assessment (AGWA) documentation (Version 2.0, 145 p). Tuscon, Arizona.

    Google Scholar 

  106. van Dijk, A. I., & Renzullo, L. J. (2011). Water resource monitoring systems and the role of satellite observations. Hydrology and Earth System Sciences, 15, 39–55.

    Article  Google Scholar 

  107. NASA Landsat Program (2010). Landsat ETM+ scenes L1T, USGS, Sioux Falls. Retrieved from http://glovis.usgs.gov/

    Google Scholar 

  108. ERDAS (2010): ERDAS Imagine (Version 10) [Computer program], Norcross.

    Google Scholar 

  109. Chander, G., Markham, B.L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of the Environment, 113, 893–903.

    Google Scholar 

  110. Furby, S. L., & Campbell, N. A. (2001). Calibrating images from different dates to ‘like-value’ digital counts. Remote Sensing of Environment, 77, 186–196.

    Article  Google Scholar 

  111. Beisl, U., Telaar, J., & Schönermark, M. v. (2008). Atmospheric correction, reflectance calibration and BRDF correction for ADS40 image data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B7), 7–12.

    Google Scholar 

  112. Callahan, K. E. (2003). Validation of a radiometric normalisation procedure for satellite derived imagery within a change detection framework (61 p). Master thesis: Utah State University.

    Google Scholar 

  113. El Hajj, M., Bégué, A., Lafrance, B., HAgolle, O., Dediau, G., & Rumeau, M. (2008). Relative radiometric normalisation and atmospheric correction of a SPOT 5 time series. Sensors, 8, 2774–2791.

    Google Scholar 

  114. Hong, G., & Zhang, Y. (2008). A comparative study on radiometric normalisation using high resolution satellite images. International Journal of Remote Sensing, 29(2), 425–438.

    Article  Google Scholar 

  115. Schott, J. R., Salvaggio, C., & Volchok, W. J. (1988). Radiometric scene normalisation using Pseudoinvariant features. Remote Sensing of Environment, 26, 1–16.

    Article  Google Scholar 

  116. Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalisation techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51, 117–126.

    Article  Google Scholar 

  117. Brütt, A. (2005). Erstellung eines Moduls zur atmosphärischen Korrektur für optische Satellitendaten (67 p). Bachelorarbeit: Georg-August-Universität Göttingen.

    Google Scholar 

  118. Schöttker, B. (2002). Erfassung der Landbedeckung und Ableitung von Vegetationsveränderungen anhand multitemporaler LANDSAT-Daten in Westafrika (Benin) (152 p). Diploma thesis, Rheinische Friedrich-Wilhelms-Universität Bonn. Retrieved 19 Dec, 2008, from http://www.giub.uni-bonn.de/rsrg/www/docs/Schoettker_Diplomarbeit_2002.pdf.

  119. Vogel, M. (2005). Erfassung von Vegetationsveränderungen in Namibia mit Hilfe von Fernerkundungs-Change-Detection-Verfahren und unter Berücksichtigung rezenter Niederschlagsereignisse (366 p). Dissertation, Julius-Maximilians-Universität Würzburg.

    Google Scholar 

  120. Neubert, M., & Meinel, G. (2005). Atmosphärische und topographische Korrektur von IKONOS-Daten mit ATCOR. In C. Heipke, K. Jacobsen & M. Gerke (Eds.), ISPRS Hannover Workshop 2005. High-Resolution Earth Imaging for Geospatial Information (17–20 May, 2005). Hannover International Archives of Photogrammetry and Remote Sensing, 36, 1–6.

    Google Scholar 

  121. Belward, A. S. (1991). Spectral characteristics of vegetation, soil and water in the visible, near-infrared and middle-infrared wavelength. In A. S. Belward & C. R. Valenzuela (Eds.), Remote sensing and geographical information systems for resource management in developing countries (pp. 31–53). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  122. Su, Z. (2000). Remote sensing of land use and vegetation for mesoscale hydrological studies. International Journal of Remote Sensing, 21(2), 213–233.

    Article  Google Scholar 

  123. Kauth, R. J., & Thomas, G. S. (1976). The tasseled cap: a graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. Symposium on Machine Processing of Remotely Sensed Data, 1976, 4B-41–4B-51 (June 29–July 1).

    Google Scholar 

  124. Franke, J. (2003). Analyse der Aussagefähigkeit verschiedener satellitengestützter Vegetationsindizes bezüglich der räumlichen Vegetationsverteilung (121 p). Unpublished dimploma thesis, Rheinische Friedirch-Wilhelms-Universität Bonn. Retrieved 19 Dec, 2008, from http://www.giub.uni-bonn.de/rsrg/www/docs/Franke_Diplomarbeit_2003.pdf.

  125. Runnstrom, M. C. (2003). Rangeland development of the Mu Us Sandy Land in semi-arid China: An analysis using landsat and NOAA remote sensing data. Land Degradation and Development, 14(2), 189–202.

    Article  Google Scholar 

  126. Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.

    Article  Google Scholar 

  127. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Article  Google Scholar 

  128. Karnieli, A., Gilad, U., Ponzet, M., Svoray, T., Mirzadinov, R., & Fedorina, O. (2008). Assessing land-cover change and degradation in the Central Asian deserts using satellite image processing and geostatistical methods. Journal of Arid Environments, 72, 2093–2105.

    Article  Google Scholar 

  129. Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: Principles and practices (183 p). Boca Raton, FL: CRC Press.

    Google Scholar 

  130. Fricke, K. (2008). The development of Midong New District, Urumqi, PR China: Ecological and historical context and environmental consequences (165 p). Heidelberg University: Unpublished diploma thesis.

    Google Scholar 

  131. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  132. Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (526 p). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  133. Star, J. L. (Ed.) (2010). Integration of geographic information systems and remote sensing (225 p). Cambridge: Cambridge University Press.

    Google Scholar 

  134. Banerjee, M., Capozzoli, M., McSweeney, L., & Sinha, D. (1999). Beyond kappa. A review of interrater agreement measures. The Canadian Journal of Statistics, 27(1), 3–23.

    Article  Google Scholar 

  135. Bastiaanssen, W. G., & Bandara, K. M. (2001). Evaporative depletion assessments for irrigated watersheds in Sri Lanka. Irrigation Science, 21, 1–15.

    Google Scholar 

  136. Foody, G. (2008). Harshness in image classification accuracy assessment. International Journal of Remote Sensing, 29(11), 3137–3158.

    Article  Google Scholar 

  137. Shoshany, M. (2000). Satellite remote sensing of natural Mediterranean vegetation: A review within an ecological context. Progress in Physical Geography, 24(2), 153–178.

    Google Scholar 

  138. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., et al. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430.

    Article  Google Scholar 

  139. Water Affairs Bureau Urumqi (2003). Water Report 2003. Urumqi: Water Affairs Bureau Urumqi City, digital.

    Google Scholar 

  140. Water Affairs Bureau Urumqi (2004). Water Report 2004 (27 p). Urumqi: Water Affairs Bureau Urumqi City.

    Google Scholar 

  141. Water Affairs Bureau Urumqi (2005). Water Report 2005 (27 p). Urumqi: Water Affairs Bureau Urumqi City.

    Google Scholar 

  142. Water Affairs Bureau Urumqi (2007). Water Report 2007 (24 p). Urumqi: Water Affairs Bureau Urumqi City.

    Google Scholar 

  143. Liersch, S. (2005). Auswirkungen von Landnutzungsänderungen und umweltgerechten Bewirtschaftungsmethoden auf den Wasser- und Stoffhaushalt des Einzugsgebietes der Ems in Nordrhein-Westfalen: Modellierung einer Landnutzungssituation, die den Umweltstandards der EG-Wasserrahmenrichtlinie entspricht (120 p). Diploma thesis, Universität Potsdam.

    Google Scholar 

  144. Bieri, M., & Schleiss, A. J. (2010). Hydrologisch-hydraulische Modellierung von alpinen Einzugsgebieten mit komplexen Kraftwerksanlagen. In K. Weber, E. Fenrich, T. Gebler, M. Kramer & M. Noack (Eds.), 12. Treffen junger WissenschaftlerInnen an Wasserbauinstituten (pp. 99–105). Stuttgart: Institut für Wasserbau der Universität Stuttgart.

    Google Scholar 

  145. Martinec, J., & Rango, A. (1989). Merits of statistical criteria for the performance of hydrological models. Water Resources Bulletin, 25(2), 421–432.

    Google Scholar 

  146. Mu, Q., Zhao, M., & Running, S. W. (2011). MOD Global Terrestrial Evapotranspiration Dataset. Retrieved 27 Apr, 2012, from http://www.ntsg.umt.edu/project/mod16.

  147. Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115, 1781–1800.

    Article  Google Scholar 

  148. Gassmann, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the American Society of Agricultural and Biological Engineers, 50(4), 1211–1250.

    Google Scholar 

  149. Grassland, Soil and Water Research Laboratory (2011). ArcSWAT (Soil and Water Assessment Tool), Version 2009. Retrieved from http://www.swat.tamu.edu/software/arcswat.

  150. Legesse, D., Abiye, T. A., Vallet-Coulomb, C., & Abate, H. (2010). Streamflow sensitivity to climate and land cover changes: Meki River, Ethiopia. Hydrology and Earth System Sciences, 14, 2277–2287.

    Article  Google Scholar 

  151. Zhang, X., Chen, Y., Xia, J., & Yang, Q. (2011a). Impacts of climate change on the availability of water resources and water resources planning. In L. Ren, W. Wang & F. Yuan (Eds.), Proceedings of IWRM2010 Hydrological Cycle and Water Resources Sustainability in Changing Environments (Wallingford pp. 324–329, November 2010). Nanjing, China: IAHS Press.

    Google Scholar 

  152. Statistics Bureau of Xinjiang Uygur Autonomous Region (2005). Xinjiang Statistical Yearbook 2005. China Statistics Press, Beijing, CD-ROM.

    Google Scholar 

  153. Statistics Bureau of Xinjiang Uygur Autonomous Region (2006). Xinjiang Statistical Yearbook 2006. China Statistics Press, Beijing, CD-ROM.

    Google Scholar 

  154. Statistics Bureau of Xinjiang Uygur Autonomous Region (2007). Xinjiang Statistical Yearbook 2007. China Statistics Press, Beijing, CD-ROM.

    Google Scholar 

  155. Statistics Bureau of Xinjiang Uygur Autonomous Region (2009). Xinjiang Statistical Yearbook 2009. China Statistics Press, Beijing, CD-ROM.

    Google Scholar 

  156. Statistics Bureau of Xinjiang Uygur Autonomous Region (2010). Xinjiang Statistical Yearbook 2010. China Statistics Press, Beijing, CD-ROM.

    Google Scholar 

  157. Roth, K. (2011). Soil physics lecture notes: V2.0. Heidelberg: Institute of Environmental Physics, Heidelberg University.

    Google Scholar 

  158. Foken, T. (1990). Turbulenter Energieaustausch zwischen Atmosphäre und Unterlage: Methoden, meßtechnische Realisierung sowie ihre Grenzen und Anwendungsmöglichkeiten (287 p). Offenbach am Main: DWD.

    Google Scholar 

  159. Kelliher, F. M., Leuning, R., & Schulze, E. D. (1993). Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95, 153–163.

    Article  Google Scholar 

  160. Nakai, T., Sumida, A., Matsumoto, K., Daikuko, K., Iida, S., Park, H., et al. (2008). Aerodynamic scaling for estimating the mean height of dense canopy. Boundary-Layer Meteorology, 128, 423–443.

    Article  Google Scholar 

  161. Rahman, K. (2011). Runoff simulation in a glacier dominated watershed using semi distributed hydrological model. International SWAT Conference 2011, Toledo, Spain. Retrieved 5 Oct, 2011, from http://swat.tamu.edu/media/40645/rahman.pdf.

  162. Johnsson, H., & Lundin, L.-C. (1991). Surface runoff and soil water percolation as affected by snow and soil frost. Journal of Hydrology, 122(1–4), 141–159.

    Article  Google Scholar 

  163. Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., & Hensley, S. (2005). An assessment of the SRTM topographic products (143 p). Pasadena, California: Technical Report JPL D-31639, Jet Propulsion Laboratory.

    Google Scholar 

  164. Bolten, A., & Bubenzer, O. (2006). New elevation data (SRTM/ASTER) for geomorphological and geoarchaeological research in arid regions. Zeitschrift für Geomorphologie Suppl., 142, 265–279.

    Google Scholar 

  165. U.S. Geological Survey (2012b). MODIS overview. Retrieved 19 Mar, 2012, from https://lpdaac.usgs.gov/products/modis_overview.

  166. NASA (2011). Product TRMM_3B43. Retrieved 19 Apr, 2012, from http://mirador.gsfc.nasa.gov/collections/TRMM_3B43__006.shtml.

  167. NASA (2012). Landsat 7. Retrieved 19 Apr, 2012, from http://landsat.gsfc.nasa.gov/about/L7_td.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Fricke .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fricke, K. (2014). Water Balance Model. In: Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01610-8_3

Download citation

Publish with us

Policies and ethics