Skip to main content

Implementation of an Explicit Algebraic Reynolds Stress Model in an Implicit Very High-Order Discontinuous Galerkin Solver

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 95))

Abstract

In this work we present the main features of an implicit implementation of the explicit algebraic Reynolds stress model (EARSM) of Wallin and Johansson (J Fluid Mech 403:89–132, 2000) in the high-order Discontinuous Galerkin (DG) solver named MIGALE (Bassi et al. (2011) Discontinuous Galerkin for turbulent flows. In: Wang ZJ (ed) Adaptive high-order methods in computational fluid dynamics. Volume 2 of Advances in computational fluid dynamics. World Scientific). Explicit Algebraic Reynolds stress models replace the linear Boussinesq hypothesis by an algebraic approximation of the anisotropy transport equations, resulting in a non-linear constitutive relation for the Reynolds stress tensor in terms of mean flow strain-rate and rate-of-rotation tensors. The EARSM model has been implemented in the existing k-ω model of the DG code MIGALE without any recalibration of the constants and a basic assessment and validation of its near-near wall behaviour has been done on a turbulent flat plate test case (Slater et al. (2000) The NPARC verification and validation archive. ASME Paper 2000-FED-11233, ASME). Consistently with the mean-flow equations, the turbulence model equations have been discretized to a high-order spatial accuracy on hybrid type elements by using hierarchical and orthonormal polynomial basis functions, local to each element and defined in the physical space. Such discretization preserves its accuracy also for highly-stretched elements with curved boundaries as those used within turbulent boundaries layers. For steady-state computations, the time integration of the fully coupled system of governing equations is performed implicitly by means of the linearized backward Euler method where the Jacobian is derived analytically and a pseudo-transient continuation strategy is employed (Bassi et al. (2010) Very high-order accurate discontinuous Galerkin computation of transonic turbulent flows on aeronautical configurations. In: Norbert Kroll, Heribert Bieler, Herman Deconinck, Vincent Couaillier, Harmen van der Ven, and Kaare Sørensen (eds) ADIGMA – A European initiative on the development of adaptive higher-order variational methods for aerospace applications. Volume 113 of Notes on numerical fluid mechanics and multidisciplinary design. Springer, Berlin/Heidelberg, pp 25–38). The capabilities of the present version of the code will be demonstrated by computing an external aerodynamic problem proposed within the EU-funded project IDIHOM (Project IDIHOM (2012) Industrialisation of high-order methods a top-down approach).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Project IDIHOM, Industrialisation of high-order methods a top-down approach, 2012.

    Google Scholar 

  2. D. N. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.

  4. F. Bassi, L. Botti, A. Colombo, A. Crivellini, N. Franchina, A. Ghidoni, and S. Rebay. Very high-order accurate discontinuous Galerkin computation of transonic turbulent flows on aeronautical configurations. In Norbert Kroll, Heribert Bieler, Herman Deconinck, Vincent Couaillier, Harmen van der Ven, and Kaare Sørensen, editors, ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, volume 113 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 25–38. Springer Berlin / Heidelberg, 2010.

    Google Scholar 

  5. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, and P. Tesini. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. Journal of Computational Physics, 231(1):45–65, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bassi, L. Botti, N. Colombo, A. Ghidoni, and S. Rebay. Discontinuous Galerkin for turbulent flows. In Z. J. Wang, editor, Adaptive high-order methods in computational fluid dynamics, volume 2 of Advances in Computational Fluid Dynamics. World Scientific, 2011.

    Google Scholar 

  7. F. Bassi, A. Crivellini, D. A. Di Pietro, and S. Rebay. An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys., 218:794–815, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations. Comput. & Fluids, 34:507–540, 2005.

    Article  MATH  Google Scholar 

  9. F. Bassi and S. Rebay. A high order discontinuous Galerkin method for compressible turbulent flows. In Discontinuous Galerkin Methods. Theory, Computation and Applications, volume 11 of Lecture Notes in Computational Science and Engeneering, pages 77–88. Springer-Verlag, 2000. First Internation Symposium on Discontinuous Galerkin Methods, May 24–26, 1999, Newport, RI, USA.

    Google Scholar 

  10. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In R. Decuypere and G. Dibelius, editors, Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pages 99–108, Antwerpen, Belgium, March 5–7 1997. Technologisch Instituut.

    Google Scholar 

  11. L. Botti. Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces. Journal of Scientific Computing, 52(3):675–703, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo. Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations, 16:365–378, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Crippa. Advances in vortical flow prediction methods for design of delta-winged aircraft. PhD thesis, KTH, Aeronautical and Vehicle Engineering, 2008. QC 20100713.

    Google Scholar 

  14. D. A. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Methods. Maths & Applications. Springer-Verlag, 2012.

    Book  MATH  Google Scholar 

  15. V. Dolejší. Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys., 4:231–274, 2008.

    MathSciNet  Google Scholar 

  16. G. J. Gassner, F. Lörcher, and C.-D. Munz. A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput., 34:260–286, 2008.

    Google Scholar 

  17. T. B. Gatski and C. G. Speziale. On explicit algebraic stress models for complex turbulent flows. Journal of Fluid Mechanics, 254:59–78, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Jongen and T. B. Gatski. General explicit algebraic stress relations and best approximation for three-dimensional flows. International Journal of Engineering Science, 36(78):739–763, 1998.

    Article  Google Scholar 

  19. R. Konrath, C. Klein, and A. Schrøder. PSP and PIV investigations on the VFE-2 configuration in sub- and transonic flow. AIAA Paper, (2008–379), 2008.

    Google Scholar 

  20. R. Konrath, C. Klein, and A. Schrøder. PSP and PIV investigations on the vfe-2 configuration in sub- and transonic flow. Aerospace Science and Technology, 24(1):22–31, 2013.

    Article  Google Scholar 

  21. F. R. Menter, A. V. Garbaruk, and Y. Egorov. Explicit Algebraic Reynolds Stress Models for Anisotropic Wall-Bounded Flows. Versailles, July 6–9th 2009. EUCASS–3rd European Conference for Aero-Space Sciences.

    Google Scholar 

  22. G. Mompean, S. Gavrilakis, L. Machiels, and M. O. Deville. On predicting the turbulence-induced secondary flows using nonlinear k-epsilon models. Physics of Fluids, 8(7):1856–1868, 1996.

    Article  MATH  Google Scholar 

  23. H. Naji, G. Mompeanr, and O. El Yahyaoui. Evaluation of explicit algebraic stress models using direct numerical simulations. Journal of Turbulence, page N38, 2004.

    Google Scholar 

  24. S. B. Pope. A more general effective-viscosity hypothesis. Journal of Fluid Mechanics, 72:331–340, 1975.

    Article  MATH  Google Scholar 

  25. W. Rodi. A new algebraic relation for calculating the Reynolds stresses. Z. Angew. Math. Mech, 56:219–221, 1976.

    Article  MathSciNet  Google Scholar 

  26. J. W. Slater. NPARC alliance CFD verification and validation Web site, 2003. http://www.grc.nasa.gov/WWW/wind/valid/archive.

  27. J. W. Slater, J. C. Dudek, and K. E. Tatum. The NPARC verification and validation archive. ASME Paper 2000-FED-11233, ASME, 2000.

    Google Scholar 

  28. P. Tesini. An h-Multigrid Approach for High-Order Discontinuous Galerkin Methods. PhD thesis, Università degli Studi di Bergamo, January 2008.

    Google Scholar 

  29. The second international Vortex Flow Experiment (VFE-2). http://vfe2.dlr.de.

  30. S. Wallin and A. V. Johansson. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech., 403:89–132, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Wieghardt and W. Tillman. On the turbulent friction layer for rising pressure. Technical Memorandum 1314, NACA, 1951.

    Google Scholar 

  32. D. C. Wilcox. Turbulence Modelling for CFD. DCW industries Inc., La Cañada, CA 91011, USA, 1993.

    Google Scholar 

  33. D. A. Yoder and N. J. Georgiadis. Implementation and validation of the Chien k-ε turbulence model in the Wind Navier-Stokes code. AIAA Paper 99-0745, AIAA, 1999.

    Google Scholar 

Download references

Acknowledgements

This work has been carried out within the EU FP7 IDIHOM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Rebay, S. (2014). Implementation of an Explicit Algebraic Reynolds Stress Model in an Implicit Very High-Order Discontinuous Galerkin Solver. In: Azaïez, M., El Fekih, H., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. Lecture Notes in Computational Science and Engineering, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-01601-6_8

Download citation

Publish with us

Policies and ethics