Advertisement

Other Non-commutative Multiple-Valued Logic Algebras

  • Lavinia Corina Ciungu
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

In this chapter we present some specific properties of other non-commutative multiple-valued logic algebras: pseudo-MTL algebras, bounded R-monoids, pseudo-BL algebras and pseudo-MV algebras. As main results, we extend to the case of pseudo-MTL algebras some results regarding the prime filters proved for pseudo-BL algebras. The Glivenko property for multiple-valued logic algebras is defined and studied.

References

  1. 9.
    Birkhoff, G.: Lattice Theory. Am. Math. Soc., Providence (1967) zbMATHGoogle Scholar
  2. 30.
    Buşneag, D., Piciu, D.: On the lattice of filters of a pseudo-BL algebra. J. Mult.-Valued Log. Soft Comput. 12, 217–248 (2006) zbMATHGoogle Scholar
  3. 85.
    Di Nola, A., Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras: part I. Mult. Valued Log. 8, 673–714 (2002) MathSciNetzbMATHGoogle Scholar
  4. 86.
    Di Nola, A., Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras: part II. Mult. Valued Log. 8, 717–750 (2002) MathSciNetzbMATHGoogle Scholar
  5. 88.
    Di Nola, A., Dvurečenskij, A., Tsinakis, C.: Perfect GMV-algebras. Commun. Algebra 36, 1221–1249 (2008) zbMATHCrossRefGoogle Scholar
  6. 95.
    Dvurečenskij, A.: On partial addition in pseudo-MV algebras. In: Proc. 4th International Symposium on Economic Informatics, pp. 952–960. INFOREC Printing House, Bucharest (1999) Google Scholar
  7. 96.
    Dvurečenskij, A.: States on pseudo-MV algebras. Stud. Log. 68, 301–327 (2001) CrossRefGoogle Scholar
  8. 97.
    Dvurečenskij, A.: Pseudo-MV algebras are intervals in -groups. J. Aust. Math. Soc. 70, 427–445 (2002) CrossRefGoogle Scholar
  9. 98.
    Dvurečenskij, A.: Every linear pseudo-BL algebra admits a state. Soft Comput. 6, 495–501 (2007) CrossRefGoogle Scholar
  10. 99.
    Dvurečenskij, A.: Aglianò-Montagna type decomposition of linear pseudo-hoops and its applications. J. Pure Appl. Algebra 211, 851–861 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 100.
    Dvurečenskij, A.: On n-perfect GMV-algebras. J. Algebra 319, 4921–4946 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 108.
    Dvurečenskij, A., Pulmannova, S.: New Trends in Quantum Structures. Kluwer Academic, Dordrecht (2000) zbMATHCrossRefGoogle Scholar
  13. 110.
    Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded non-commutative R-monoids. Semigroup Forum 72, 190–206 (2006) MathSciNetGoogle Scholar
  14. 111.
    Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded non-commutative R-monoids. Math. Slovaca 56, 487–500 (2006) MathSciNetzbMATHGoogle Scholar
  15. 113.
    Dvurečenskij, A., Giuntini, R., Kowalski, T.: On the structure of pseudo-BL algebras and pseudo-hoops in quantum logics. Found. Phys. 49, 1519–1542 (2010) CrossRefGoogle Scholar
  16. 116.
    Dymek, G., Walendziak, A.: Semisimple, Archimedean and semilocal pseudo-MV algebras. Sci. Math. Jpn. 66, 217–226 (2007) MathSciNetzbMATHGoogle Scholar
  17. 117.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124, 271–288 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 122.
    Flondor, P., Georgescu, G., Iorgulescu, A.: Pseudo-t-norms and pseudo-BL algebras. Soft Comput. 5, 355–371 (2001) zbMATHCrossRefGoogle Scholar
  19. 127.
    Galatos, N., Ono, H.: Glivenko theorems for substructural logics over FL. J. Symb. Log. 71, 1353–1384 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 128.
    Galatos, N., Tsinakis, C.: Generalized MV-algebras. J. Algebra 283, 254–291 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 129.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam (2007) Google Scholar
  22. 135.
    Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras: a non-commutative extension of MV-algebras. In: Proc. 4th International Symposium of Economic Informatics, pp. 961–968. INFOREC Printing House, Bucharest (1999) Google Scholar
  23. 136.
    Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras: a non-commutative extension of BL-algebras. In: Abstracts of the 5th International Conference FSTA 2000, Slovakia, pp. 90–92 (2000) Google Scholar
  24. 137.
    Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult. Valued Log. 6, 95–135 (2001) MathSciNetzbMATHGoogle Scholar
  25. 143.
    Georgescu, G., Leuştean, L.: Some classes of pseudo-BL algebras. J. Aust. Math. Soc. 73, 127–153 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 148.
    Georgescu, G., Leuştean, L., Preoteasa, V.: Pseudo-hoops. J. Mult.-Valued Log. Soft Comput. 11, 153–184 (2005) zbMATHGoogle Scholar
  27. 154.
    Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Bull. Cl. Sci., Acad. R. Belg. 15, 183–188 (1929) zbMATHGoogle Scholar
  28. 158.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic, Dordrecht (1998) zbMATHCrossRefGoogle Scholar
  29. 159.
    Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Comput. 2, 124–128 (1998) CrossRefGoogle Scholar
  30. 169.
    Ioniţă, C.: Pseudo-MV algebras as semigroups. In: Proc. 4th International Symposium on Economic Informatics, pp. 983–987. INFOREC Printing House, Bucharest (1999) Google Scholar
  31. 176.
    Iorgulescu, A.: Classes of BCK-algebras—part III. Preprint 3, Institute of Mathematics of the Romanian Academy (2004) Google Scholar
  32. 179.
    Iorgulescu, A.: On pseudo-BCK algebras and porims. Sci. Math. Jpn. 16, 293–305 (2004) MathSciNetGoogle Scholar
  33. 181.
    Iorgulescu, A.: Classes of pseudo-BCK algebras—part I. J. Mult.-Valued Log. Soft Comput. 12, 71–130 (2006) MathSciNetzbMATHGoogle Scholar
  34. 182.
    Iorgulescu, A.: Classes of pseudo-BCK algebras—part II. J. Mult.-Valued Log. Soft Comput. 12, 575–629 (2006) MathSciNetzbMATHGoogle Scholar
  35. 186.
    Iorgulescu, A.: Algebras of Logic as BCK-Algebras. ASE Ed., Bucharest (2008) zbMATHGoogle Scholar
  36. 188.
    Iorgulescu, A.: Classes of examples of pseudo-MV algebras, pseudo-BL algebras and divisible bounded non-commutative residuated lattices. Soft Comput. 14, 313–327 (2010) zbMATHCrossRefGoogle Scholar
  37. 197.
    Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s logic MTL. Stud. Log. 70, 183–192 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 199.
    Jipsen, P., Montagna, F.: On the structure of generalized BL-algebras. Algebra Univers. 55, 227–238 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 205.
    Kühr, J.: Pseudo-BL algebras and DR-monoids. Math. Bohem. 128, 199–208 (2003) MathSciNetzbMATHGoogle Scholar
  40. 207.
    Kühr, J.: On a generalization of pseudo-MV algebras. J. Mult.-Valued Log. Soft Comput. 12, 373–389 (2006) zbMATHGoogle Scholar
  41. 212.
    Leuştean, I.: Local pseudo-MV algebras. Soft Comput. 5, 386–395 (2001) zbMATHCrossRefGoogle Scholar
  42. 232.
    Noguera, C., Esteva, F., Gispert, J.: On some varieties of MTL-algebras. Log. J. IGPL 13, 443–466 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 233.
    Noguera, C., Esteva, F., Gispert, J.: Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops. Arch. Math. Log. 44, 869–886 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 238.
    Piciu, D.: Algebras of Fuzzy Logic. Universitaria Ed., Craiova (2007) Google Scholar
  45. 240.
    Rachůnek, J.: A duality between algebras of basic logic and bounded representable DR-monoids. Math. Bohem. 126, 561–569 (2001) MathSciNetzbMATHGoogle Scholar
  46. 241.
    Rachůnek, J.: A non-commutative generalization of MV-algebras. Czechoslov. Math. J. 52, 255–273 (2002) zbMATHCrossRefGoogle Scholar
  47. 244.
    Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56, 223–233 (2006) MathSciNetzbMATHGoogle Scholar
  48. 254.
    Torrens, A.: An approach to Glivenko’s theorem in algebraizable logics. Stud. Log. 88, 349–383 (2008) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lavinia Corina Ciungu
    • 1
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations