Advertisement

Pseudo-BCK Algebras

  • Lavinia Corina Ciungu
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

BCK algebras were introduced originally by K. Isèki with a binary operation ∗ modeling the set-theoretical difference and with a constant element 0, that is, a least element. Another motivation is from classical and non-classical prepositional calculi modeling logical implications. Such algebras contain as a special subfamily the family of MV-algebras where some important fuzzy structures can be studied. Pseudo-BCK algebras were introduced by G. Georgescu and A. lorgulescu as algebras with “two differences”, a left- and right-difference, instead of one ∗ and with a constant element 0 as the least element. Nowadays pseudo-BCK algebras are used in a dual form, with two implications, → and ⇝ and with one constant element 1, that is, the greatest element. Thus such pseudo-BCK algebras are in the “negative cone” and are also called “left-ones”. More properties of pseudo-BCK algebras and their connection with other fuzzy structures were established by A. lorgulescu. In this chapter we prove new properties of pseudo-BCK algebras with pseudo-product and pseudo-BCK algebras with pseudo-double negation and we show that every pseudo-BCK algebra can be extended to a good one. Examples of proper pseudo-BCK algebras, good pseudo-BCK algebras and pseudo-BCK lattices are given and the orthogonal elements in a pseudo-BCK algebra are characterized. Finally, we define the maximal and normal deductive systems of a pseudo-BCK algebra with pseudo-product and we study their properties.

References

  1. 2.
    Anderson, M., Feil, T.: Lattice-Ordered Groups: An Introduction. Reidel, Dordrecht (1988) zbMATHCrossRefGoogle Scholar
  2. 12.
    Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer, Berlin (2005) zbMATHGoogle Scholar
  3. 76.
    Darnel, M.R.: Theory of Lattice-Ordered Groups. Dekker, New York (1995) zbMATHGoogle Scholar
  4. 107.
    Dvurečenskij, A., Kühr, J.: On the structure of linearly ordered pseudo-BCK algebras. Arch. Math. Log. 48, 771–791 (2009) zbMATHCrossRefGoogle Scholar
  5. 112.
    Dvurečenskij, A., Vetterlein, T.: Algebras in the positive cone of po-groups. Order 19, 127–146 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 138.
    Georgescu, G., Iorgulescu, A.: Pseudo-BCK algebras: an extension of BCK-algebras. In: Proc. DMTCS’01: Combinatorics, Computability and Logic, pp. 97–114. Springer, London (2001) CrossRefGoogle Scholar
  7. 163.
    Halaš, R., Kühr, J.: Deductive systems and annihilators of pseudo BCK-algebras. Ital. J. Pure Appl. Math. 25, 83–94 (2009) zbMATHGoogle Scholar
  8. 167.
    Idziak, P.M.: Lattice operations in BCK-algebras. Math. Jpn. 29, 839–846 (1984) MathSciNetzbMATHGoogle Scholar
  9. 174.
    Iorgulescu, A.: Classes of BCK-algebras—part I. Preprint 1, Institute of Mathematics of the Romanian Academy (2004) Google Scholar
  10. 175.
    Iorgulescu, A.: Classes of BCK-algebras—part II. Preprint 2, Institute of Mathematics of the Romanian Academy (2004) Google Scholar
  11. 176.
    Iorgulescu, A.: Classes of BCK-algebras—part III. Preprint 3, Institute of Mathematics of the Romanian Academy (2004) Google Scholar
  12. 177.
    Iorgulescu, A.: Classes of BCK-algebras—part IV. Preprint 4, Institute of Mathematics of the Romanian Academy (2004) Google Scholar
  13. 178.
    Iorgulescu, A.: Classes of BCK-algebras—part V. Preprint 5, Institute of Mathematics of the Romanian Academy (2004) Google Scholar
  14. 179.
    Iorgulescu, A.: On pseudo-BCK algebras and porims. Sci. Math. Jpn. 16, 293–305 (2004) MathSciNetGoogle Scholar
  15. 180.
    Iorgulescu, A.: Pseudo-Iséki algebras. Connection with pseudo-BL algebras. J. Mult.-Valued Log. Soft Comput. 11, 263–308 (2005) MathSciNetzbMATHGoogle Scholar
  16. 181.
    Iorgulescu, A.: Classes of pseudo-BCK algebras—part I. J. Mult.-Valued Log. Soft Comput. 12, 71–130 (2006) MathSciNetzbMATHGoogle Scholar
  17. 182.
    Iorgulescu, A.: Classes of pseudo-BCK algebras—part II. J. Mult.-Valued Log. Soft Comput. 12, 575–629 (2006) MathSciNetzbMATHGoogle Scholar
  18. 183.
    Iorgulescu, A.: On BCK algebras—part I.a: an attempt to treat unitarily the algebras of logic. New algebras. J. Univers. Comput. Sci. 13, 1628–1654 (2007) MathSciNetzbMATHGoogle Scholar
  19. 184.
    Iorgulescu, A.: On BCK algebras—part I.b: an attempt to treat unitarily the algebras of logic. New algebras. J. Univers. Comput. Sci. 14, 3686–3715 (2008) MathSciNetzbMATHGoogle Scholar
  20. 185.
    Iorgulescu, A.: On BCK algebras—part II: new algebras. The ordinal sum (product) of two bounded BCK algebras. Soft Comput. 12, 835–856 (2008) zbMATHCrossRefGoogle Scholar
  21. 186.
    Iorgulescu, A.: Algebras of Logic as BCK-Algebras. ASE Ed., Bucharest (2008) zbMATHGoogle Scholar
  22. 187.
    Iorgulescu, A.: Monadic involutive BCK-algebras. Acta Univ. Apulensis, Mat.-Inform. 15, 159–178 (2008) MathSciNetzbMATHGoogle Scholar
  23. 189.
    Iorgulescu, A.: On BCK algebras—part III: classes of examples of proper MV algebras, BL algebras and divisible bounded residuated lattices, with or without condition (WNM). J. Mult.-Valued Log. Soft Comput. 16, 341–386 (2010) MathSciNetzbMATHGoogle Scholar
  24. 190.
    Iorgulescu, A.: The implicative-group—a term equivalent definition of the group coming from algebras of logic—part I. Preprint 11, Institute of Mathematics of the Romanian Academy (2011) Google Scholar
  25. 192.
    Iorgulescu, A.: On BCK algebras—part IV: classes of examples of finite proper IMTL algebras, MTL and bounded αγ algebras, with or without condition (WNM) (submitted) Google Scholar
  26. 193.
    Iorgulescu, A.: On BCK algebras—part V: classes of examples of finite proper bounded α, β, γ, βγ algebras and BCK(P) lattices (residuated lattices), with or without conditions (WNM) and (DN) (submitted) Google Scholar
  27. 194.
    Isèki, K.: An algebra related with a propositional calculus. Proc. Jpn. Acad. 42, 26–29 (1966) zbMATHCrossRefGoogle Scholar
  28. 206.
    Kühr, J.: Pseudo-BCK algebras and residuated lattices. Contrib. Gen. Algebra 16, 139–144 (2005) Google Scholar
  29. 208.
    Kühr, J.: Pseudo-BCK algebras and related structures. Univerzita Palackého v Olomouci (2007) Google Scholar
  30. 209.
    Kühr, J.: Pseudo-BCK semilattices. Demonstr. Math. 40, 495–516 (2007) zbMATHGoogle Scholar
  31. 210.
    Kühr, J.: Representable pseudo-BCK algebras and integral residuated lattices. J. Algebra 317, 354–364 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 225.
    Meng, J., Jun, Y.B.: BCK-Algebras. Kyung Moon Sa Co., Seoul (1994) zbMATHGoogle Scholar
  33. 242.
    Rachůnek, J., Šalounová, D.: A generalization of local fuzzy structures. Soft Comput. 11, 565–571 (2007) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lavinia Corina Ciungu
    • 1
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations