Skip to main content

The Axiom of Choice

  • Chapter
  • First Online:
The Real Numbers

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 6908 Accesses

Abstract

The ZF axioms allow us to assert the existence of any set whose members are selected according to some definable “rule”—this is essentially what the replacement schema says. However, we often want to assert the existence of a set without knowing a rule for selecting its members. Typically, the members are simply “chosen” from other sets, but not according to any “rule.” When infinitely many choices are required, we may not be able to guarantee the existence of the set without some axiom of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As mentioned in Sect. 6.8, Cohen (1963) showed that the axiom of choice and the continuum hypothesis cannot be proved from the ZF axioms. It follows that the axiom of constructibility is not provable in ZF either.

  2. 2.

    A reason for writing σ on different sides in the two notations is that in σ ∗ b we use σ before seeing b, namely, on the empty sequence; and in a ∗σ we use σ after seeing (the first member of) a.

  3. 3.

    The usual statement of Zorn’s lemma does not restrict the ordering to be set inclusion. However, this is the only case we need, and there is really no loss of generality.

  4. 4.

    Zorn’s lemma gets its name from Zorn (1935), but it is actually due to Kuratowski (1922). The name stuck after Bourbaki (1939) called it “Zorn’s theorem.”

References

  • Bettazzi, R. (1896). Gruppi finiti ed infiniti di enti. Acad. Sci. Torino 31, 446–456.

    MATH  Google Scholar 

  • Borel, É. (1905). Quelques remarques sur les principes de la théorie des ensembles. Math. Ann. 60.

    Google Scholar 

  • Bourbaki, N. (1939). Éléments de Mathématique, Théorie des Ensembles. Paris: Hermann. English translation, Elements of Mathematics. Theory of Sets, Hermann, Paris, 1968.

    Google Scholar 

  • Cantor, G. (1878). Ein Beitrag zur Mannigfaltigkeitslehre. J. reine und angew. Math. 84, 242–258.

    Article  Google Scholar 

  • Cantor, G. (1883). Über unendliche, lineare Punktmannigfaltigkeiten, 5. Math. Ann. 21, 545–586.

    Article  MathSciNet  Google Scholar 

  • Zermelo, E. (1904). Beweis dass jede Menge wohlgeordnet werden kann. Mathematische Annalen 59, 514–516. English translation in van Heijenoort (1967), 139–141.

    Google Scholar 

  • Cauchy, A.-L. (1821). Cours d’Analyse. Chez Debure Frères. Annotated English translation in Bradley and Sandifer (2009).

    Google Scholar 

  • Cohen, P. J. (1963). The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences 50, 1143–1148.

    Article  MathSciNet  Google Scholar 

  • Dedekind, R. (1877). Sur la théorie des nombres entiers algebriques. Bull. Soc. Math. France 11, 278–288. English translation in Dedekind (1996).

    Google Scholar 

  • Feferman, S. and A. Levy (1963). Independence results in set theory by Cohen’s method II. Notices Amer. Math. Soc. 10, 593.

    Google Scholar 

  • Gödel, K. (1938). The consistency of the axiom of choice and the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences 24, 556–557.

    Article  Google Scholar 

  • Gödel, K. (1939). Consistency proof for the generalized continuum hypothesis. Proceedings of the National Academy of Sciences 25, 220–224.

    Article  Google Scholar 

  • Hamel, G. (1905). Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung \(f(x + y) = f(x) + f(y)\). Math. Ann. 60, 459–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Heine, E. (1872). Die Elemente der Functionenlehre. J. reine und angew. Math. 74, 172–188.

    Article  MATH  Google Scholar 

  • Kuratowski, K. (1922). Une méthode d’elimination des nombres transfinis des raisonnements mathématiques. Fundamenta Mathematicae, 76–108.

    Google Scholar 

  • Martin, D. A. and J. R. Steel (1989). A proof of projective determinacy. Journal of the American Mathematical Society 2(1), 71–125.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, G. H. (1982). Zermelo’s Axiom of Choice. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Mycielski, J. and S. Świerczkowski (1964). On the Lebesgue measurability and the axiom of determinateness. Fundamenta Mathematicae 54, 67–71.

    MathSciNet  MATH  Google Scholar 

  • Neeman, I. (2010). Determinacy in L(). In Handbook of Set Theory. Vol. 3, pp. 1877–1950. Dordrecht: Springer.

    Google Scholar 

  • Steinhaus, H. (1965). Games, An Informal Talk. Amer. Math. Monthly 72(5), 457–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Steinitz, E. (1910). Algebraische Theorie der Körper. J. reine und angew. Math. 137, 167–309.

    MATH  Google Scholar 

  • Vitali, G. (1905). Sul problema della misura dei gruppi di punti di una retta. Bologna: Gamberini e Parmeggiani.

    MATH  Google Scholar 

  • Zermelo, E. (1913). Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In Proceedings of the 5th International Congress of Mathematicians, vol. 2, Cambridge University Press, Cambridge. English translation in Zermelo (2010), 267–273.

    Google Scholar 

  • Zorn, M. (1935). A remark on a method in transfinite algebra. Bull. Amer. Math. Soc. 41, 667–670.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stillwell, J. (2013). The Axiom of Choice. In: The Real Numbers. Undergraduate Texts in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-01577-4_7

Download citation

Publish with us

Policies and ethics