Skip to main content

Structural and Functional Prediction of the Hypothetical Protein Pa2481 in Pseudomonas Aeruginosa Pao1

  • Conference paper
Advances in Computational Biology

Abstract

Pseudomonas aeruginosa is a bacterium resistant to a large number of antibiotics and disinfectants. Since the antigens are responsible for producing this resistance, and most of these are proteins, the objective of this work was to predict by computational means the 3D structure and function of PA2481 protein, determining whether is involved in the antibiotic resistance of this bacterium. In order to do this, the primary structure was analyzed computationally by using servers PROSITE, PFAM, BLAST, PROTPARAM, GLOBPLOT, and PROTSCALE. The secondary structure was obtained by the consensus of algorithms SOPM, PREDATOR, DPM, DSC, and GOR4. The 3D structure was predicted with the I-TASSER server and its stereochemical conformation was evaluated with the STRUCTURE ASSESSMENT tool. The final model was visualized with PyMol program. As a result, the 3D structure of PA2481 is proposed according to its stereochemical conformation; two domains are identified as cytochrome c. The function of the protein may be related to electron transport and proton pumping to generate ATP in Pseudomonas aeruginosa. These results allow a better understanding of the role this protein plays in the physiology of this bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hardalo, C., Edberg, S.C.:  Pseudomonas aeruginosa: assessment of risk from drinking water. Crit. Rev. Microbiol (1997), doi:10.3109/10408419709115130

    Google Scholar 

  2. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., Olson, M.V.: Complete genome sequence of Pseudomonas aeruginosa PAO1: an opportunistic pathogen. Nature 406(2000), 959–964 (2000)

    Google Scholar 

  3. Baker, D.A., Sali, A.: Protein structure prediction and structural genomics. Science 294, 93–96 (2001)

    Article  Google Scholar 

  4. Skolnick, J., Fetrow, J.S., Kolinski, A.: Structural genomics and its importance for gene function analysis. Nature Biotechnologic 18, 283–287 (2000)

    Article  Google Scholar 

  5. Makino, S., Ewing, T.J., Kuntz, I.D.: Dream++: Flexible docking program for virtual combinatorial libraries. Journal Comput. Aided Mol. Des. 13, 513–532 (1999)

    Article  Google Scholar 

  6. Terwilliger, T.C., Waldo, G., Peat, T.S., Newman, J.M., Chu, K., Berendzen, J.: Class-directed structure determination: foundation for a protein structure initiative. Protein Science (1998), doi:10.1002/pro.5560070901

    Google Scholar 

  7. Hieter, P., Boguski, M.: Functional Genomics: It’s All How You Read It. Science (1997), doi:10.1126/science.278.5338.601

    Google Scholar 

  8. Dunham, I.: Genomics-the new rock and roll? Trends in Genetics (2000), doi:10.1016/S0168-9525(00)02109-0

    Google Scholar 

  9. Roberts, R.J.: Identifying Protein Function—A Call for Community Action. PLoS Biology (2004), doi:10.1371/journal.pbio.0020042

    Google Scholar 

  10. Pruitt, K., Tatusova, T., Maglott, D.: NCBI Reference Sequence (RefSeq): a curated non redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research (2007), doi:10.1093/nar/gkl842

    Google Scholar 

  11. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. (1997), doi:10.1093/nar/25.17.3389

    Google Scholar 

  12. Sigrist, C.J.A., Cerutti, L., de Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A., Hulo, N.: PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. (2010), doi:10.1093/nar/gkp885

    Google Scholar 

  13. Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liecht, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, L., Stockinger, H.: ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research (2012), doi:10.1093/nar/gks400

    Google Scholar 

  14. Bateman, A., Coin, L., Durbin, R., Finn, R., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E., Studholme, D., Yeats, C., Eddy, S.: The PFAM protein families database. Nucleic Acid Research (2012), doi:10.1093/nar/gkh121

    Google Scholar 

  15. Gill, S., Von Hippel, P.: Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry 182, 319–326 (1989)

    Article  Google Scholar 

  16. Guruprasad, K., Reddy, B.V., Pandit, M.V.V.: Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Dec. 4, 155–161 (1990)

    Article  Google Scholar 

  17. Ikai, A.J.: Thermostability and aliphatic index of globular proteins. Journal Biochem. 88, 1895–1898 (1980)

    Google Scholar 

  18. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathy character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  Google Scholar 

  19. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A.: In: Walker, J.M. (ed.) Protein Identification and Analysis Tools, Totowa, NJ (2005)

    Google Scholar 

  20. Imer, O., Cavas, L.: The Bioinformatics Tools for the Estimation of Disordered. Biomedical Engineering Meeting (2009), doi:10.1109/BIYOMUT.2009.5130377

    Google Scholar 

  21. Combet, C., Blanchet, C., Geourjon, C., Deléage, G.: NPS@: Network Protein Sequence Analysis TIBS  25, 147–150 (2000)

    Google Scholar 

  22. Ambrish, R., Kucukural, A., Zhang, Y.: I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols (2010), doi:10.1038/nprot.2010.5

    Google Scholar 

  23. Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics (2006), doi:10.1093/bioinformatics/bti770

    Google Scholar 

  24. Claverie, J., Notredame, C.: Bioinformatics for Dummies. Indianapolis, Indiana (2007)

    Google Scholar 

  25. Barker, P.D., Ferguson, S.J.: Still a puzzle: why is covalently attached in c-Type cytochromes? Structure 7, 281–290 (1999)

    Article  Google Scholar 

  26. Zufferey, R., Preising, O., Hennecke, H., Thony-meyer, L.: Assembly and function of the cytochrome cbb3 oxidase subunits in Bradyrhizobium japonicum. . J. Biol. Chem. 271, 9114–9119 (1996)

    Article  Google Scholar 

  27. Buschmann, S., Warkentin, E., Xie, H., Langer, J.D., Ermier, U., Michel, H.: The structure of cbb3 cytochrome oxidase provides insights into proton pumping. Science (2010), doi:10.1126/science.1187303

    Google Scholar 

  28. Lee, B.: Physical properties of cytochromes c: 1. role of cytochrome c’ as a nitric oxide carrier 2. Folding of cytochrome c. New York (2009)

    Google Scholar 

  29. Martinou, J.C., Desagher, S., Antonsson, B.: Cytochrome c release from mitochondria: all or nothing. Nat. Cell Biol. 2, 41–43 (2000)

    Article  Google Scholar 

  30. Allen, J.W., Daltrop, O., Stevens, J.M., Ferguson, S.J.: C-type cytochromes: diverse structures and biogenesis Systems pose evolutionary problems. Philios. Trans. R. Soc. 358, 255–266 (2003)

    Article  Google Scholar 

  31. María, T.P.: Influencia del regulador global Anr en la fisiología de Pseudomonas extremaustralis, una bacteria productora de polihidroxibutirato. Tesis Doctoral. Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (2011)

    Google Scholar 

  32. Werner, M.S.: Biología: Fundamentos para Medicina y Ciencias de la Vida. Barcelona, España (2007)

    Google Scholar 

  33. Bachmair, A., Finley, D., Varshavsky, A.: In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986)

    Article  Google Scholar 

  34. Jinling, C., Dandan, Z., Pei, S., Wei, S., Gengfu, X., Yinong, D.: Bioinformatics analysis on ORF1 protein of Torque teno virus (SANBAN isolate). Asian Pacific Journal of Tropical Medicine (2011), doi:10.1016/S1995-7645(11)60207-1

    Google Scholar 

  35. Lieberman, M., Marks, A.D., Smith, C.M.: Marks. Basic medical biochemistry: a clinical approach, China (2009)

    Google Scholar 

  36. Uversky, V.N., Dunker, A.K.: Understanding protein non-folding. Biochimica et Biophysical Acta (2010), doi:10.1016/j.bbapap.2010.01.017

    Google Scholar 

  37. Uversky, V.N., Radivojac, P., Lakoucheva, L.M., Obradovic, Z., Dunker, A.K.: Prediction of intrinsic disorder and its use in functional proteomics. Methods in Molecular Biology 408, 69–92 (2007)

    Article  Google Scholar 

  38. Pollastri, G., Martin, A.J.M., Mooney, C., Vullo, A.: Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics (2007), doi:10.1186/1471-2105-8-201

    Google Scholar 

  39. Barreto, L.V., Barreto, G.E., Morales, L., Acevedo, O.E., Santos, J.G.: Proteína LIC10494 de Leptospira interrogans serovar copenhageni: modelo estructural y regiones funcionales asociadas. Universitas Scientiarum 17, 16–27 (2012)

    Google Scholar 

  40. Homero, S.S., Lareo, L.R., Oribio-quinto, C., Martinez-Mendoza, J., Chavez-Zobel, A.: Predicción computacional de estructura terciaria de las proteínas humanas Hsp27, αB-cristalina y HspB8. Universitas Scientiarum 16, 15–28 (2011)

    Google Scholar 

  41. Tosatto, S., Battistutta, R.: TAP score: torsion angle propensity normalization applied to local protein structure evaluation. BMC Bioinformatics (2007), doi:10.1186/1471-2105-8-155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alberto Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Díaz, D.A., Barreto, G.E., Santos, J.G. (2014). Structural and Functional Prediction of the Hypothetical Protein Pa2481 in Pseudomonas Aeruginosa Pao1 . In: Castillo, L., Cristancho, M., Isaza, G., Pinzón, A., Rodríguez, J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-01568-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01568-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01567-5

  • Online ISBN: 978-3-319-01568-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics