Skip to main content

Optimal Control for a Discrete Time Influenza Model

  • Conference paper
Advances in Computational Biology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 232))

  • 2091 Accesses

Abstract

We formulated a discrete time model in order to study optimal control strategies for a single influenza outbreak. In our model, we divided the population into four classes: susceptible, infectious, treated, and recovered individuals. The total population was divided into subgroups according to activity or susceptibility levels. The goal was to determine how treatment doses should be distributed in each group in order to reduce the final epidemic size. The case of limited resources is considered by including an isoperimetric constraint. We found that the use of antiviral treatment resulted in reductions in the cumulative number of infected individuals. We proposed to solve the problem by using the primal-dual interior-point method that enforces epidemiological constraints explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brauer, F.: Epidemic models with heterogeneous mixing and treatment. Bull. of Math. Bio. 70, 1869–1885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brauer, F., Feng, Z., Castillo-Chavez, C.: Discrete Epidemic Models. Math. Biosc. & Eng. 7, 1–15 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castillo-Chavez, C., Hethcote, H.W.: Epidemiological models with age structure, proportionate mixing, and cross immunity. J. of Math. Bio. 27, 233–258 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chowell, G., Ammon, C.E., Hengartner, N.W., Hyman, J.M.: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J. Theor. Biol. 241, 193–204 (2006)

    Article  MathSciNet  Google Scholar 

  5. Del Valle, S.Y., Hyman, J.M., Hethcote, H.W., Eubank, S.G.: Mixing patterns between age groups in social networks. Social Networks 29, 539–554 (2007)

    Article  Google Scholar 

  6. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the primal-dual newton interior-point method for nonlinear programming. J. of Optim. Theo. and App. 89(3), 507–541 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. González-Parra, P., Lee, S., Velazquez, L., Castillo-Chavez, C.: A note on the use of optimal control on a discrete time model of influenza dynamics. Math. Biosc. & Eng. 8(8), 183–197 (2011)

    Article  MATH  Google Scholar 

  8. González-Parra, P.: Constraint optimal control for a multi-group discrete time influenza model. PhD. dissertation, The University of Texas at El Paso, El Paso, TX (2012)

    Google Scholar 

  9. Herrera-Valdez, M.A., Cruz-Aponte, M., Castillo-Chavez, C.: Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different “waves” of A-H1N1pdm cases observed in Mxico during 2009. Math. Biosc. & Eng. 8(8), 21–48 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Hethcote, H.W.: An age-structured model for pertussis transmission. Math. Biosc. 145, 89–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, S., Chowell, G., Castillo-Chavez, C.: Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation. J. Theor. Biol. 265, 136–150 (2010)

    Article  MathSciNet  Google Scholar 

  12. Lee, S., Morales, R., Castillo-Chavez, C.: A note on the use of influenza vaccination strategies when supply is limited. Math. Biosc. & Eng. 8(8), 171–182 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Lenhart, S., Workman, J.: Optimal control applied to biological models. Chapman & Hall, CRC Mathematical and Computational Biology series (2007)

    Google Scholar 

  14. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer (2006)

    Google Scholar 

  15. Rios-Soto, K., Song, B., Castillo-Chavez, C.: Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Math. Biosc. & Eng. 8(8), 199–222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Andrea Gonzalez Parra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Parra, P.A.G., Ceberio, M., Lee, S., Castillo-Chavez, C. (2014). Optimal Control for a Discrete Time Influenza Model. In: Castillo, L., Cristancho, M., Isaza, G., Pinzón, A., Rodríguez, J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-01568-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01568-2_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01567-5

  • Online ISBN: 978-3-319-01568-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics