Advertisement

Results

Chapter
  • 303 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The quaternary and tertiary structure of the 20S proteasome is strictly conserved from archaea to mammals and it is assumed that its two types of subunits, termed α and β, evolved from a common ancestor protein [1, 2, 3, 4, 5]. In this regard the catalytically active proteasome subunits of murine 20S proteasome types display high sequence identities to each other: β1c/β1i: 63.3 %, β2c/β2i: 58.9 %, β5c/β5i: 72.4 %, β5c/β5t: 54.4 % β5i/β5t: 50.5 %.

Keywords

Amino Acid Exchange Substrate Binding Pocket Morpholine Ring I35T M45R Mutant M45R 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Löwe, D. Stock, B. Jap, P. Zwickl, W. Baumeister, R. Huber, Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995)CrossRefGoogle Scholar
  2. 2.
    M. Groll, L. Ditzel, J. Löwe, D. Stock, M. Bochtler, H.D. Bartunik, R. Huber, Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997)CrossRefGoogle Scholar
  3. 3.
    P. Zwickl, A. Grziwa, G. Puhler, B. Dahlmann, F. Lottspeich, W. Baumeister, Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31, 964–972 (1992)CrossRefGoogle Scholar
  4. 4.
    M. Unno, T. Mizushima, Y. Morimoto, Y. Tomisugi, K. Tanaka, N. Yasuoka, T. Tsukihara, The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618 (2002)CrossRefGoogle Scholar
  5. 5.
    E. Huber, M. Basler, R. Schwab, W. Heinemeyer, C.J. Kirk, M. Groettrup, M. Groll, Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148, 727–738 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Murata, K. Sasaki, T. Kishimoto, S. Niwa, H. Hayashi, Y. Takahama, K. Tanaka, Regulation of CD8 + T cell development by thymus-specific proteasomes. Science 316, 1349–1353 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Murata, Y. Takahama, K. Tanaka, Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 20, 192–196 (2008)CrossRefGoogle Scholar
  8. 8.
    G. Schmidtke, S. Emch, M. Groettrup, H.G. Holzhutter, Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome. J. Biol. Chem. 275, 22056–22063 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Groettrup, R. Kraft, S. Kostka, S. Standera, R. Stohwasser, P.M. Kloetzel, A third interferon-gamma-induced subunit exchange in the 20S proteasome. Eur. J. Immunol. 26, 863–869 (1996)CrossRefGoogle Scholar
  10. 10.
    M. Groll, M. Bajorek, A. Köhler, L. Moroder, D.M. Rubin, R. Huber, M.H. Glickman, D. Finley, A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000)CrossRefGoogle Scholar
  11. 11.
    F.G. Whitby, E.I. Masters, L. Kramer, J.R. Knowlton, Y. Yao, C.C. Wang, C.P. Hill, Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000)CrossRefGoogle Scholar
  12. 12.
    P.C. Ramos, A.J. Marques, M.K. London, R.J. Dohmen, Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J. Biol. Chem. 279, 14323–14330 (2004)CrossRefGoogle Scholar
  13. 13.
    B. Guillaume, J. Chapiro, V. Stroobant, D. Colau, B. Van Holle, G. Parvizi, M.P. Bousquet-Dubouch, I. Theate, N. Parmentier, B.J. Van den Eynde, Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc. Natl. Acad. Sci. U S A 107, 18599–18604 (2010)CrossRefGoogle Scholar
  14. 14.
    N. Klare, M. Seeger, K. Janek, P.R. Jungblut, B. Dahlmann, Intermediate-type 20 S proteasomes in HeLa cells: “asymmetric” subunit composition, diversity and adaptation. J. Mol. Biol. 373, 1–10 (2007)CrossRefGoogle Scholar
  15. 15.
    E.M. Huber, M. Groll, Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew. Chem. Int. Ed. Engl. 51, 8708–8720 (2012)CrossRefGoogle Scholar
  16. 16.
    M.A. Gräwert, M. Groll, Exploiting nature’s rich source of proteasome inhibitors as starting points in drug development. Chem. Comm. 48, 1364–1378 (2012)CrossRefGoogle Scholar
  17. 17.
    P. Beck, C. Dubiella, M. Groll, Covalent and non-covalent reversible proteasome inhibition. Biol. Chem. 393, 1101–1120 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Blackburn, K.M. Gigstad, P. Hales, K. Garcia, M. Jones, F.J. Bruzzese, C. Barrett, J.X. Liu, T.A. Soucy, D.S. Sappal, N. Bump, E.J. Olhava, P. Fleming, L.R. Dick, C. Tsu, M.D. Sintchak, J.L. Blank, Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Biochem. J. 430, 461–476 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Muchamuel, M. Basler, M.A. Aujay, E. Suzuki, K.W. Kalim, C. Lauer, C. Sylvain, E.R. Ring, J. Shields, J. Jiang, P. Shwonek, F. Parlati, S.D. Demo, M.K. Bennett, C.J. Kirk, M. Groettrup, A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 15, 781–787 (2009)CrossRefGoogle Scholar
  20. 20.
    H.T. Ichikawa, T. Conley, T. Muchamuel, J. Jiang, S. Lee, T. Owen, J. Barnard, S. Nevarez, B.I. Goldman, C.J. Kirk, R.J. Looney, J.H. Anolik, Novel proteasome inhibitors have a beneficial effect in murine lupus via the dual inhibition of type i interferon and autoantibody secreting cells. Arthritis Rheum. 64, 493–503 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Basler, M. Dajee, C. Moll, M. Groettrup, C.J. Kirk, Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J. Immunol. 185, 634–641 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Nagayama, M. Nakahara, M. Shimamura, I. Horie, K. Arima, N. Abiru, Prophylactic and therapeutic efficacies of a selective inhibitor of the immunoproteasome for Hashimoto’s thyroiditis, but not for Graves’ hyperthyroidism, in mice. Clin. Exp. Immunol. 168, 268–273 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Orlowski, C. Cardozo, C. Michaud, Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32, 1563–1572 (1993)CrossRefGoogle Scholar
  24. 24.
    S. Arastu-Kapur, J.L. Anderl, M. Kraus, F. Parlati, K.D. Shenk, S.J. Lee, T. Muchamuel, M.K. Bennett, C. Driessen, A.J. Ball, C.J. Kirk, Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin. Cancer Res. 17, 2734–2743 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Groll, K.B. Kim, N. Kairies, R. Huber, C.M. Crews, Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α’, β’-epoxyketone proteasome inhibitors. J. Am. Chem. Soc. 122, 1237–1238 (2000)CrossRefGoogle Scholar
  26. 26.
    S.D. Demo, C.J. Kirk, M.A. Aujay, T.J. Buchholz, M. Dajee, M.N. Ho, J. Jiang, G.J. Laidig, E.R. Lewis, F. Parlati, K.D. Shenk, M.S. Smyth, C.M. Sun, M.K. Vallone, T.M. Woo, C.J. Molineaux, M.K. Bennett, Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 67, 6383–6391 (2007)CrossRefGoogle Scholar
  27. 27.
    N.E. Franke, D. Niewerth, Y.G. Assaraf, J. van Meerloo, K. Vojtekova, C.H. van Zantwijk, S. Zweegman, E.T. Chan, C.J. Kirk, D.P. Geerke, A.D. Schimmer, G.J. Kaspers, G. Jansen, J. Cloos, Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26, 757–768 (2011)Google Scholar
  28. 28.
    R.J.C. Estiveira, The active subunits of the 20S Proteasome in Saccharomyces cerevisiae—Mutational analysis of their specificities and a C-terminal extension, PhD thesis, Universität Stuttgart, 2008Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Chair of BiochemistryTechnische Universität MünchenGarchingGermany

Personalised recommendations