Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 330 Accesses

Abstract

The quaternary and tertiary structure of the 20S proteasome is strictly conserved from archaea to mammals and it is assumed that its two types of subunits, termed α and β, evolved from a common ancestor protein [15]. In this regard the catalytically active proteasome subunits of murine 20S proteasome types display high sequence identities to each other: β1c/β1i: 63.3 %, β2c/β2i: 58.9 %, β5c/β5i: 72.4 %, β5c/β5t: 54.4 % β5i/β5t: 50.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Löwe, D. Stock, B. Jap, P. Zwickl, W. Baumeister, R. Huber, Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995)

    Article  Google Scholar 

  2. M. Groll, L. Ditzel, J. Löwe, D. Stock, M. Bochtler, H.D. Bartunik, R. Huber, Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997)

    Article  CAS  Google Scholar 

  3. P. Zwickl, A. Grziwa, G. Puhler, B. Dahlmann, F. Lottspeich, W. Baumeister, Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31, 964–972 (1992)

    Article  CAS  Google Scholar 

  4. M. Unno, T. Mizushima, Y. Morimoto, Y. Tomisugi, K. Tanaka, N. Yasuoka, T. Tsukihara, The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618 (2002)

    Article  CAS  Google Scholar 

  5. E. Huber, M. Basler, R. Schwab, W. Heinemeyer, C.J. Kirk, M. Groettrup, M. Groll, Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148, 727–738 (2012)

    Article  CAS  Google Scholar 

  6. S. Murata, K. Sasaki, T. Kishimoto, S. Niwa, H. Hayashi, Y. Takahama, K. Tanaka, Regulation of CD8 + T cell development by thymus-specific proteasomes. Science 316, 1349–1353 (2007)

    Article  CAS  Google Scholar 

  7. S. Murata, Y. Takahama, K. Tanaka, Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 20, 192–196 (2008)

    Article  CAS  Google Scholar 

  8. G. Schmidtke, S. Emch, M. Groettrup, H.G. Holzhutter, Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome. J. Biol. Chem. 275, 22056–22063 (2000)

    Article  CAS  Google Scholar 

  9. M. Groettrup, R. Kraft, S. Kostka, S. Standera, R. Stohwasser, P.M. Kloetzel, A third interferon-gamma-induced subunit exchange in the 20S proteasome. Eur. J. Immunol. 26, 863–869 (1996)

    Article  CAS  Google Scholar 

  10. M. Groll, M. Bajorek, A. Köhler, L. Moroder, D.M. Rubin, R. Huber, M.H. Glickman, D. Finley, A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000)

    Article  CAS  Google Scholar 

  11. F.G. Whitby, E.I. Masters, L. Kramer, J.R. Knowlton, Y. Yao, C.C. Wang, C.P. Hill, Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000)

    Article  CAS  Google Scholar 

  12. P.C. Ramos, A.J. Marques, M.K. London, R.J. Dohmen, Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J. Biol. Chem. 279, 14323–14330 (2004)

    Article  CAS  Google Scholar 

  13. B. Guillaume, J. Chapiro, V. Stroobant, D. Colau, B. Van Holle, G. Parvizi, M.P. Bousquet-Dubouch, I. Theate, N. Parmentier, B.J. Van den Eynde, Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc. Natl. Acad. Sci. U S A 107, 18599–18604 (2010)

    Article  CAS  Google Scholar 

  14. N. Klare, M. Seeger, K. Janek, P.R. Jungblut, B. Dahlmann, Intermediate-type 20 S proteasomes in HeLa cells: “asymmetric” subunit composition, diversity and adaptation. J. Mol. Biol. 373, 1–10 (2007)

    Article  CAS  Google Scholar 

  15. E.M. Huber, M. Groll, Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew. Chem. Int. Ed. Engl. 51, 8708–8720 (2012)

    Article  CAS  Google Scholar 

  16. M.A. Gräwert, M. Groll, Exploiting nature’s rich source of proteasome inhibitors as starting points in drug development. Chem. Comm. 48, 1364–1378 (2012)

    Article  Google Scholar 

  17. P. Beck, C. Dubiella, M. Groll, Covalent and non-covalent reversible proteasome inhibition. Biol. Chem. 393, 1101–1120 (2012)

    Article  CAS  Google Scholar 

  18. C. Blackburn, K.M. Gigstad, P. Hales, K. Garcia, M. Jones, F.J. Bruzzese, C. Barrett, J.X. Liu, T.A. Soucy, D.S. Sappal, N. Bump, E.J. Olhava, P. Fleming, L.R. Dick, C. Tsu, M.D. Sintchak, J.L. Blank, Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Biochem. J. 430, 461–476 (2010)

    Article  CAS  Google Scholar 

  19. T. Muchamuel, M. Basler, M.A. Aujay, E. Suzuki, K.W. Kalim, C. Lauer, C. Sylvain, E.R. Ring, J. Shields, J. Jiang, P. Shwonek, F. Parlati, S.D. Demo, M.K. Bennett, C.J. Kirk, M. Groettrup, A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 15, 781–787 (2009)

    Article  CAS  Google Scholar 

  20. H.T. Ichikawa, T. Conley, T. Muchamuel, J. Jiang, S. Lee, T. Owen, J. Barnard, S. Nevarez, B.I. Goldman, C.J. Kirk, R.J. Looney, J.H. Anolik, Novel proteasome inhibitors have a beneficial effect in murine lupus via the dual inhibition of type i interferon and autoantibody secreting cells. Arthritis Rheum. 64, 493–503 (2011)

    Article  Google Scholar 

  21. M. Basler, M. Dajee, C. Moll, M. Groettrup, C.J. Kirk, Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J. Immunol. 185, 634–641 (2010)

    Article  CAS  Google Scholar 

  22. Y. Nagayama, M. Nakahara, M. Shimamura, I. Horie, K. Arima, N. Abiru, Prophylactic and therapeutic efficacies of a selective inhibitor of the immunoproteasome for Hashimoto’s thyroiditis, but not for Graves’ hyperthyroidism, in mice. Clin. Exp. Immunol. 168, 268–273 (2012)

    Article  CAS  Google Scholar 

  23. M. Orlowski, C. Cardozo, C. Michaud, Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32, 1563–1572 (1993)

    Article  CAS  Google Scholar 

  24. S. Arastu-Kapur, J.L. Anderl, M. Kraus, F. Parlati, K.D. Shenk, S.J. Lee, T. Muchamuel, M.K. Bennett, C. Driessen, A.J. Ball, C.J. Kirk, Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin. Cancer Res. 17, 2734–2743 (2011)

    Article  CAS  Google Scholar 

  25. M. Groll, K.B. Kim, N. Kairies, R. Huber, C.M. Crews, Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α’, β’-epoxyketone proteasome inhibitors. J. Am. Chem. Soc. 122, 1237–1238 (2000)

    Article  CAS  Google Scholar 

  26. S.D. Demo, C.J. Kirk, M.A. Aujay, T.J. Buchholz, M. Dajee, M.N. Ho, J. Jiang, G.J. Laidig, E.R. Lewis, F. Parlati, K.D. Shenk, M.S. Smyth, C.M. Sun, M.K. Vallone, T.M. Woo, C.J. Molineaux, M.K. Bennett, Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 67, 6383–6391 (2007)

    Article  CAS  Google Scholar 

  27. N.E. Franke, D. Niewerth, Y.G. Assaraf, J. van Meerloo, K. Vojtekova, C.H. van Zantwijk, S. Zweegman, E.T. Chan, C.J. Kirk, D.P. Geerke, A.D. Schimmer, G.J. Kaspers, G. Jansen, J. Cloos, Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26, 757–768 (2011)

    Google Scholar 

  28. R.J.C. Estiveira, The active subunits of the 20S Proteasome in Saccharomyces cerevisiae—Mutational analysis of their specificities and a C-terminal extension, PhD thesis, Universität Stuttgart, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Maria Huber .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huber, E.M. (2013). Results. In: Structural and Functional Characterization of the Immunoproteasome. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01556-9_4

Download citation

Publish with us

Policies and ethics