Skip to main content

Current Demographic Models

  • Chapter
  • First Online:
Handbook of Palaeodemography

Part of the book series: INED Population Studies ((INPS,volume 2))

Abstract

The purpose of palaeodemographic analysis is to understand the population as it was, within a given socio-environmental context, where the individuals it comprised formed a dynamic group marked by births, deaths and sometimes migrations, and when all we have, at best, is the bones of those who died. This is no easy task and involves the use of population models and life tables or parametric models. The hypothesis required for such models are recalled and the main life tables actually used by demographers and palaeodemographers are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some authors have suggested tracking changes in the age distribution of deaths in order to measure the growth rate (Valkovics 1982); others (Longacre 1976; Cohen 1977) have based their calculations on population estimates from various periods, but their results are not robust enough to serve as a grounding for palaeodemographic hypotheses.

    At present, most studies compare the distribution of ages at death obtained for a stationary population (r = 0) with that resulting from a non-zero growth rate, either chosen arbitrarily or estimated (see examples in Chap. 11).

  2. 2.

    For example, the role of causes of death in variations in mortality.

  3. 3.

    For a detailed presentation of the various mortality models, see Bourgeois-Pichat 1994, pp. 41–86.

  4. 4.

    The East family (Austria, Czechoslovakia, Germany, Hungary, Northern and Central Italy, Poland: 31 tables) is characterised by high infant mortality and high mortality at ages 50+. The North family (Iceland, Norway, Sweden: 9 tables) has low infant mortality and low mortality at ages 50+. The South family (Southern Italy and Sicily, Spain, Portugal: 22 tables) has high under-5 mortality, low mortality at ages 40–60 and high mortality at ages 65+. The West family (130 tables from the other 22 countries, mainly in Europe, plus Australia and New Zealand, Canada and the United States, Israel, Japan, Taiwan and the white population of South Africa) comes close to the general mortality model observed in the preliminary phase.

  5. 5.

    Life expectancy at birth: a general mortality index measuring the mean number of years a newborn would live if exposed throughout its life to the mortality conditions observed in its year of birth.

  6. 6.

    In the 1983 revision, Coale, Demeny and Vaughan took account of this objection and included some tables for Africa. In 1976, Samuel H. Preston had already proposed introducing a fifth “non-Western” pattern based on life tables from Latin America.

  7. 7.

    The OECD used a corpus of 104 life tables from developing countries, divided into four groups by mortality by age (the fifth region was an aggregate of the four). For each group the OECD also published a standard table. However, the poor quality of the input data limits the validity of these model tables.

  8. 8.

    The UN only used 36 tables from 22 developing countries in Latin America, Asia and Africa, also divided into four “geographical” regimes and a general mortality pattern. But what they gained in terms of quality they perhaps lost in terms of representativeness.

  9. 9.

    To our knowledge, the life models for developing countries (UN 1982; OECD 1980) have not been used in palaeodemography, either due to unawareness of their potential utility, or because researchers consider that the causes of death among developing country populations are too remote from the health conditions of pre-industrial populations.

  10. 10.

    Mortality by age displays very similar patterns for all mammals. This observation has made it possible to apply to human populations a mathematical model originally designed for primates (Siler 1983).

  11. 11.

    I.e. the individual ages estimated from osteological remains.

  12. 12.

    The idea is that fertility affects the number of births in a year and contributes to widening or narrowing the base of the population pyramid, gradually altering its profile over time. Conversely, mortality, which affects all ages in roughly the same way from 1 year to the next (except for demographic crises), has a more moderate effect on population structure.

  13. 13.

    Only non-selective epidemics, such as plague, have little or no effect on the age-sex structure of the surviving population (Séguy et al. 2006b).

References

  • Acsádi, G., & Nemeskéri, J. (1970). History of human life span and mortality. Budapest: Akadémiai Kiadó.

    Google Scholar 

  • Alekseeva, T. I., & Buzhilova, A. P. (1997). Medieval urban Russians according to anthropological data: Origins, palaeodemography, palaeoecology. Anthropology and Archeology of Eurasia, 35, 42–62.

    Article  Google Scholar 

  • Bennett, K. A. (1973). On the estimation of some demographic characteristics on a prehistoric population from the American Southwest. American Journal of Physical Anthropology, 39, 223–232.

    Article  Google Scholar 

  • Bideau, A. (1983). Les mécanismes régulateurs des populations traditionnelles. Annales, économies, sociétés, civilisations, 38(5), 1040–1057.

    Google Scholar 

  • Biraben, J.-N. (1969). Durée de la vie dans la population de Columnata. Population, 24(3), 487–500.

    Article  Google Scholar 

  • Biraben, J.-N. (1979). Essai sur l’évolution du nombre des hommes. Population, 34(1), 13–25.

    Article  Google Scholar 

  • Bizot, B., Castex, D., Reynaud, P., & Signoli, M. (2005). La saison d’une peste (avril-septembre 1590): le cimetière des Fédons à Lambesc (Bouches-du-Rhône). Paris: CNRS Éditions.

    Google Scholar 

  • Bocquet-Appel, J.-P., & Bacro, J.-N. (2008). Estimation of an age distribution with its confidence intervals using an iterative Bayesian procedure and a bootstrap sampling approach. In J.-P. Bocquet-Appel (Ed.), Recent advances in palaeodemography. Data, techniques, patterns (pp. 63–82). Dordrecht: Springer Verlag.

    Chapter  Google Scholar 

  • Bocquet-Appel, J.-P., & Masset, C. (1977). Estimateurs en paléodémographie. L’Homme, 17(4), 65–90.

    Google Scholar 

  • Bocquet-Appel, J.-P., & Masset, C. (1996). Palaeodemography: Expectancy and false hope. American Journal of Physical Anthropology, 99, 571–583.

    Article  Google Scholar 

  • Bonneuil, N. (2005). Fitting to a distribution of deaths by age with application to palaeodemography. Current Anthropology, 46(suppl), S29–S45.

    Article  Google Scholar 

  • Bourgeois-Pichat, J. (1966). Le concept de population stable. Application à l’étude des populations ne disposant pas de bonnes statistiques démographiques (Études démographiques, Vol. 39). New York: UN.

    Google Scholar 

  • Bourgeois-Pichat, J. (1990). Théorie des populations semi-stables et application. Population, 45(4–5), 821–847.

    Article  Google Scholar 

  • Bourgeois-Pichat, J. (1994). La dynamique des populations. Population stables, semi-stables, quasi stables (Travaux et documents, Vol. 133). Paris: INED, coll.

    Google Scholar 

  • Brass, W. (1971). On the scale of mortality. In W. Brass (Ed.), Biological aspects of demography (pp. 69–110). London: Taylor and Francis.

    Google Scholar 

  • Brass, W. (1975). Methods for estimating fertility and mortality from limited and defective data. Chapel Hill: Carolina Population Center.

    Google Scholar 

  • Brass, W., & Coale, A. J. (1968). Methods of analysis and estimation. In W. Brass et al. (Eds.), The demography of tropical Africa (pp. 88–139). Princeton: Princeton University Press.

    Google Scholar 

  • Budnik, A., Liczbińska, G., & Gumna, I. (2004). Demographic trends and biological status of historic populations from central Poland: The Ostrów Lednicki microregion. American Journal of Physical Anthropology, 125, 369–381.

    Article  Google Scholar 

  • Castex, D. (2005). Le cimetière de peste des Fédons: des données anthropologiques aux interprétations. Des particularités démographiques propres au site des Fédons. In B. Bizot, D. Castex, P. Reynaud, & M. Signoli (Eds.), La saison d’une peste (avril-septembre 1590). Le cimetière des Fédons à Lambesc (pp. 46–53). Paris: CNRS Éditions.

    Google Scholar 

  • Castex, D., Sellier, P., Bruzek, J., Velemínský, P., Bessou, M., Dobisíková, M. (2005). “Saint-Benoît de Prague (République tchèque, xvii e s.): nouvelles données démographiques pour l’interprétation d’un cimetière de peste”, Bulletins et mémoires de la Société d’anthropologie de Paris, 16 (3–4, ns), pp. 227.

    Google Scholar 

  • Coale, A. J., & Demeny, P. (1966). Regional model life-tables and stable populations. Princeton: Princeton University Press.

    Google Scholar 

  • Coale, A. J., Demeny, P., & Vaughan, P. (1983). Regional model life-tables and stable populations. New York: Academic Press.

    Google Scholar 

  • Cohen, M. N. (1977). The food crisis in prehistory. New Haven: Yale University Press.

    Google Scholar 

  • Corruccini, R. S., Brandon, E. M., & Handler, J. S. (1989). Inferring fertility from relative mortality in historically controlled cemetery remains from Barbados. American Antiquity, 54, 609–614.

    Article  Google Scholar 

  • Courgeau, D., & Lelièvre, E. (1992). Event history analysis in demography. Oxford: Oxford University Press.

    Google Scholar 

  • Crubézy, E., Duchesne, S., & Arlaud, C. (Eds.). (2006). La mort, les morts et la ville: Saints-Côme-et-Damien, Montpellier, x e - xvi e siècles. Paris: Errance.

    Google Scholar 

  • Drusini, A. G., Carrara, N., Orefici, G., & Rippa Bonat, M. (2001). Palaeodemography of the Nasca valley: Reconstruction of the human ecology in the southern Peruvian coast. Homo, 52(2), 157–172.

    Article  Google Scholar 

  • Dupâquier, J. (1972). “De l’animal à l’homme: le mécanisme autorégulateur des populations traditionnelles“. Revue de l’Institut de sociologie, 2, 177–211.

    Google Scholar 

  • Ewbank, D., Gómez de León, J., & Stoto, M. (1983). A reducible four-parameter system of model life table. Population Studies, 37, 105–127.

    Google Scholar 

  • Forfar, D. (2006). Five parameter approach to mortality in ancient times. In L. Buchet, C. Dauphin, & I. Séguy (Eds.), La paléodémographie. Mémoire d’os, mémoire d’hommes (Actes des 8 es Journées anthropologiques de Valbonne, juin 2003) (pp. 297–302). Antibes: Éditions APDCA.

    Google Scholar 

  • Gage, T. B. (1988). Mathematical hazard models of mortality: An alternative to model life tables. American Journal of Physical Anthropology, 76, 429–441.

    Article  Google Scholar 

  • Gage, T. B. (1989). “Biomathematical approaches to the study of human variation in mortality”, Yearbook of Physical Anthropology, suppl. 10 to the American Journal of Physical Anthropology, pp. 185–214.

    Google Scholar 

  • Gage, T. B. (1990). Variation and classification of human age patterns of mortality: Analysis using competing hazards models. Human Biology, 62(5), 589–617.

    Google Scholar 

  • Gage, T. B. (1998). The comparative demography of primates: With some comments on the evolution of life histories. Annual Reviews in Anthropology, 27, 197–221.

    Article  Google Scholar 

  • Gage, T. B., & Dyke, B. (1986). Parameterizing abridged mortality tables: The siler three-component hazard model. Human Biology, 58, 275–291.

    Google Scholar 

  • Gage, T. B., & Mode, C. J. (1993). Some laws of mortality: How well do they fit? Human Biology, 65, 445–461.

    Google Scholar 

  • Graunt, J. (1662). Natural and political observations made upon the bills of mortality. London.

    Google Scholar 

  • Guillon, M. (1998). “Anthropologie de terrain et paléodémographie: études méthodologiques sur les grands ensembles funéraires. Applications au cimetière médiéval de Tournedos-Portejoie (Eure)”. Anthropology thesis, Université de Bordeaux I, 3 vol.

    Google Scholar 

  • Halley, E. (1693). “An estimate of the degrees of the mortality of mankind”. Philosophical Transactions, 17(196), 579 sq.

    Google Scholar 

  • Henneberg, M., & Steyn, M. (1994). Preliminary report on the palaeodemography of the K2 and Mapungubwe Populations (South Africa). Human Biology, 66(1), 105–120.

    Google Scholar 

  • Johansson, S. R., & Horowitz, S. (1986). Estimating mortality in skeletal populations: Influence of the growth rate on the interpretation of levels and trends during the transition to agriculture. American Journal of Physical Anthropology, 71, 233–250.

    Article  Google Scholar 

  • Komlos, J., & Nefedov, S. (2002). A compact macromodel of pre-industrial population growth. Historical Methods, 35(2), 92–94.

    Article  Google Scholar 

  • Konigsberg, L. W., & Frankenberg, S. R. (1992). Estimation of age structure in anthropological demography. American Journal of Physical Anthropology, 89, 235–256.

    Article  Google Scholar 

  • Ledermann, S. (1969). Nouvelles tables-types de mortalité (coll. “Travaux et documents, Vol. 53). Paris: INED.

    Google Scholar 

  • Ledermann, S., & Bréas, J. (1959). Les dimensions de la mortalité. Population, 11(4), 637–682.

    Article  Google Scholar 

  • Longacre, W. A. (1976). Population dynamics at Grasshopper Pueblo, Arizona, 169-184. In E. B. Zubrow (Ed.), Demographic anthropology. Quantitative approaches. Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Lotka, A. (1934). Théorie analytique des associations biologiques. Première partie: principes (Vol. 187). Paris: Hermann & Cie.

    Google Scholar 

  • Lotka, A. (1939). Théorie analytique des associations biologiques. Deuxième partie: analyse démographique avec application particulière à l’espèce humaine (Vol. 780). Paris: Hermann & Cie.

    Google Scholar 

  • Love, B., & Muller, H. G. (2002). A solution to the problem of obtaining a mortality schedule for palaeodemographic data. In R. D. Hoppa & J. W. Vaupel (Eds.), Paleodemography. Age distribution from skeletal samples (pp. 181–192). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Luy, M. A., & Wittwer-Backofen, U. (2005). Das Halley-Band für paläodemographische Mortalitätsanalysen. Zeitschrift für Bevölkerungswissenschaft, 30(2–3), 219–244.

    Google Scholar 

  • Luy, M. A., & Wittwer-Backofen, U. (2008). The Halley band for palaeodemographic mortality analysis. In J.-P. Bocquet-Appel (Ed.), Recent advances in palaeodemography: Data, techniques, patterns (pp. 119–141). Dordrecht/London: Springer Verlag.

    Chapter  Google Scholar 

  • Müller, H.-G., Love, B., & Hoppa, R. D. (2001). Semiparametric method for estimating palaeodemographic profiles from age indicator data. American Journal of Physical Anthropology, 117, 1–14.

    Article  Google Scholar 

  • O’Connor, K. A. (1995). “The age pattern of mortality: A micro-analysis of Tipu and a meta-analysis of twenty-nine palaeodemographic samples”. Unpublished PhD dissertation, University at Albany-SUNY.

    Google Scholar 

  • O’Connor, K. A., Holman, D. J., Boldse, J., Wood, J. W., & Gage, T. B. (1997). Competing and mixed hazard models of mortality: Osteological applications (abstract). American Journal of Physical Anthropology, 24 (suppl.), 180.

    Google Scholar 

  • Paine, R. R. (1989). Model life table fitting by maximum likelihood estimation: A procedure to reconstruct palaeodemographic characteristics from skeletal age distributions. American Journal of Physical Anthropology, 79, 51–62.

    Article  Google Scholar 

  • Pennington, R. (1996). Causes of early human growth. American Journal of Physical Anthropology, 99, 259–274.

    Article  Google Scholar 

  • Preston, S., & Coale, A. J. (1982). Age structure, growth, attrition, and accession: A new synthesis. Population Index, 48(2), 217–259.

    Article  Google Scholar 

  • Sattenfield, L., & Harpending, H. C. (1983). Stable populations and skeletal age. American Antiquity, 48, 489–498.

    Article  Google Scholar 

  • Séguy, I., Pennec, S., Tzortzis, S., & Signoli, M. (2006c). Modélisation de l’impact démographique de la peste, à travers l’exemple de Martigues (Bouches-du-Rhône). In L. Buchet, C. Dauphin, & I. Séguy (Eds.), La paléodémographie. Mémoire d’os, mémoire d’hommes (Actes des 8 es Journées anthropologiques de Valbonne, juin 2003) (pp. 323–330). Antibes: APDCA.

    Google Scholar 

  • Séguy, I., Buchet, L., Bringé, A., et al. (2008b). Model life tables for pre-industrial populations. First applications in palaeodemography. In J.-P. Bocquet-Appel (Ed.), Recent advances in palaeodemography. Data, techniques, patterns (pp. 109–141). Dordrecht: Springer Verlag.

    Google Scholar 

  • Sellier, P. (1996). “La mise en évidence d’anomalies démographiques et leur interprétation: population, recrutement et pratiques funéraires du tumulus de Courtesoult”. In J.-F. Piningre (Ed.), Nécropoles et société au premier âge du fer: le tumulus de Courtesoult (Haute-Saône), coll. “Documents d’Archéologie Française”, 54, (pp. 136–142 et pp. 188–200). Paris: Éditions de la Maison des Sciences de l’Homme.

    Google Scholar 

  • Siler, N. (1979). A competing-risk model for animal mortality. Ecology, 60, 750–757.

    Article  Google Scholar 

  • Siler, N. (1983). Parameters of mortality in human populations with widely varying life spans. Statistics in Medicine, 2, 373–380.

    Article  Google Scholar 

  • Siven, C. H. (1991a). On estimating mortalities from osteological age data. International Journal of Anthropology, 6(2), 97–110.

    Article  Google Scholar 

  • Siven, C. H. (1991b). On reconstructing the (once) living population from osteological age data. International Journal of Anthropology, 6(2), 111–118.

    Article  Google Scholar 

  • Skytthe, A., & Boldsen, J. L. (1993). A method for construction of standards for determination of skeletal age at death. American Journal of Physical Anthropology, 16(suppl), 182.

    Google Scholar 

  • United Nations (1955). Age and sex patterns of mortality: model life-tables for under-developed countries (Population studies, no. 22). New York: United Nations.

    Google Scholar 

  • United Nations. (1982). Model life tables for developing countries. New York. http://www.un.org/esa/population/publications/Model_Life_Tables/Model_Life_Tables.htm

  • Valkovics, E. (1982). The conditions of the use of population models on basis of the findings of palaeodemographic cemetery excavations. Demografie, 5(2–3), 295–315.

    Google Scholar 

  • Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.

    Article  Google Scholar 

  • Weiss, K. M. (1973). Demographic models for archaeology (coll. “Memoirs of the society for American archaeology, Vol. 27). Washington: Society for American Archaeology.

    Google Scholar 

  • Wood, J. W., Holman, D. J., Weiss, K. M., Buchanan, A. V., Lefor, B. (1992a). “Hazards models for human population biology”. American Journal of Physical Anthropology, Yearbook 35, 15(suppl.), 43–87.

    Google Scholar 

  • Wood, J. W., Holman, D. J., O’Connor, K. A., Ferrell, R. J. (2001). Mortality models for palaeodemography. Seattle: University of Washington, Seattle population research center, Center for studies in demography and ecology, Working papers series n°2001-2002, 53).

    Google Scholar 

  • Wood, J. W., Holman, D. J., O’Connor, K. A., & Ferrell, R. J. (2002). Mortality models for palaeodemography. In R. D. Hoppa & J. W. Vaupel (Eds.), Paleodemography. Age distributions from skeletal samples (coll. “Cambridge studies in biological and evolutionary anthropology”, Vol. 31, pp. 129–168). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Pressat, R. (1995). Éléments de démographie mathématique. Paris: Aidelf.

    Google Scholar 

  • Gabriel, K. R., & Ronan, I. (1958). Estimates of mortality from infant mortality rates. Population Studies, 12, 64–169.

    Google Scholar 

  • OECD. (1980). Mortality in developing countries. III. Vol. V–VI: New model life tables for use in developing countries (Development centre studies). Paris: OECD.

    Google Scholar 

  • Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R., & Mensforth, R. P. (1985b). Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of adult skeletal age at death. American Journal of Physical Anthropology, 68(1), 15–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Séguy, I., Buchet, L. (2013). Current Demographic Models. In: Handbook of Palaeodemography. INED Population Studies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-01553-8_6

Download citation

Publish with us

Policies and ethics