Skip to main content

Perspectives and Future Trends

  • Chapter
  • First Online:
Advanced Materials for Integrated Optical Waveguides

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 46))

Abstract

A rebuilding of the information infrastructure is taking place to give instantaneous availability of data, voice, and video. This revolution of the Information Age is being gated more by the introduction of new materials and components, than by the design of systems, software, and networks. Electrons transmitted through metal wires have an information carrying capacity limited by the resistance and capacitance of the cable and the terminating electronic circuits. Photons transmitted through optical waveguides are capacity limited only by the dispersion of the medium. Each network node that requires transduction from photonics to electronics limits the performance and affordability of the network. The key frontier is the large scale integration and manufacturing of photonic components to enable the distribution of high bit rate optical streams to the individual information appliance. Microphotonics is the platform for large scale, planar integration of optical signal processing capability. The push towards smarter, ever-denser on-chip photonic networks drives a convergence of micro-, nano-, and plasmo-photonic techniques for progressively smaller devices and for improved functionality of modulators, switches, emitters, detectors, waveguides, resonators, tapers, and filters. This convergence includes composite components: monolithic integration of microstrip waveguides, 2D and 3D photonic-crystal elements, and metal/Si plasmon-optics that utilize buried or surface-mounted 2D arrays of metal stripes or nanodots. The development of optical interconnect devices including waveguides will proceed through a synergetic collaboration among material and processing technologies, design and fabrication of integrated optoelectronics, and optoelectronic packaging technology. This chapter will provide a brief review on perspectives and future trends of optical waveguides and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baffou G et al (2010) Mapping heat origin in plasmonic structures. Phys Rev Lett 104:136805

    Article  ADS  Google Scholar 

  • Benton CJ et al (2008) Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires. Phys Rev A 78:033818–033826

    Article  ADS  Google Scholar 

  • Claps R (2003) Observation of stimulated Raman scattering in silicon waveguides. Opt Express 11:1731–1739

    Article  ADS  Google Scholar 

  • Corcoran B et al (2009) Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photon 3:206–210

    Article  ADS  Google Scholar 

  • Dragoman D (2011) Complex conjugate media: alternative configurations for miniaturized lasers. Opt Commun 284:2095–2098

    Article  ADS  Google Scholar 

  • Erni R (2009) Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102:096101

    Article  ADS  Google Scholar 

  • Faryad M, Lakhtakia A (2011) Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film. Phys Rev A 83:013814

    Article  ADS  Google Scholar 

  • Gorbach AV et al (2010) Spatiotemporal nonlinear optics in arrays of subwavelength waveguides. Phys Rev A 82:041802

    Article  ADS  Google Scholar 

  • Hiscocks MP et al (2009) Slot-waveguide cavities for optical quantum information applications. Opt Express 17(9):7295–7303

    Article  ADS  Google Scholar 

  • Hon NK et al (2009) Periodically poled silicon. Appl Phys Lett 94:091116–091118

    Article  ADS  Google Scholar 

  • Hu EL, Brongersma M, Baca A (2011) Applications: nanophotonics and plasmonics. In: Roco MC, Mirkin CA, Hersam MC (eds) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Science Policy Reports. Springer, Dordrecht, pp 417–444

    Chapter  Google Scholar 

  • Iancu V et al (2011) Calculation of the quantum efficiency for the absorption on confinement levels in quantum dots. J. Nanoparticle Res 13:1605–1612

    Article  Google Scholar 

  • Joannopoulos JD et al (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Jun YC et al (2009) Broadband enhancement of light emission in silicon slot waveguides. Opt Express 17(9):7479–7490

    Article  ADS  Google Scholar 

  • Kocaman S et al (2009) Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared. Phys Rev Lett 102:203905

    Article  ADS  Google Scholar 

  • Krasavin AV, Zayats AV (2010) Silicon-based plasmonic waveguides. Opt Express 18(11):11791–11799

    Article  ADS  Google Scholar 

  • Malomed BA et al (2005) Spatiotemporal optical solitons. J Opt B: Quantum Semiclass Opt 7:R53–R72

    Article  ADS  Google Scholar 

  • Mihalache D (2011) Recent trends in micro- and nanophotonics: a personal selection. J Optoelectron Adv Mater 13(9):1055–1066

    Google Scholar 

  • Muellner P et al (2009) Nonlinearity of optimized silicon photonic slot waveguides. Opt Express 17(11):9282–9287

    Article  ADS  Google Scholar 

  • Noginov MA et al (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

    Article  ADS  Google Scholar 

  • Oh SJ et al (2009) Nanoparticle-enabled terahertz imaging for cancer diagnosis. Opt Express 17(5):3469–3475

    Article  ADS  Google Scholar 

  • OITDA (2009) Optoelectronic technology trends. Annual Technical Report. pp 17–25

    Google Scholar 

  • OITDA (2011) Optoelectronic technology trends. Annual Technical Report. pp 18–26.

    Google Scholar 

  • Sandu I et al (2011) Synthesis of optical transparent and electrical conductive polymer/nanocarbon composite films by infiltration method. Thin Solid Films 519:4128–4131

    Article  ADS  Google Scholar 

  • Stavarache I et al (2011) Electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride. Nanoscale Res Lett 6:88

    Article  ADS  Google Scholar 

  • Suhir E (2000) Microelectronics and photonics—the future. Microelectron J 31:839–851

    Article  Google Scholar 

  • Takahashi Y et al (2007) High-Q nanocavity with a 2-ns photon lifetime. Opt Express 15:17206

    Article  ADS  Google Scholar 

  • Valentine J et al (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

    Article  ADS  Google Scholar 

  • Welsh GH, Wynne K (2009) Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces. Opt Express 17(4):2470–2480

    Article  ADS  Google Scholar 

  • Ye F et al (2011) Subwavelength vortical plasmonic lattice solitons. Opt Lett 36:1179–1181

    Article  ADS  Google Scholar 

  • Zhang S et al (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tong, X.C. (2014). Perspectives and Future Trends. In: Advanced Materials for Integrated Optical Waveguides. Springer Series in Advanced Microelectronics, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-01550-7_12

Download citation

Publish with us

Policies and ethics