Skip to main content

Metamaterial Optical Waveguides

  • Chapter
  • First Online:
Advanced Materials for Integrated Optical Waveguides

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 46))

Abstract

Optical metamaterials are man-made composite materials constructed with nanometer-sized periodic structures containing both dielectric and metal materials. These structures can produce materials with negative index of refraction—a unique material property that does not occur naturally. The theoretical breakthroughs made in this new class of electromagnetic materials are closely linked with progress in developing physics-driven design, novel fabrication, and characterization methods. For the optical waveguiding, a perfect control of the interaction between light and matter has been brought closer by the advances in fabrication of optical metamaterials. The unusual electromagnetic properties of metamaterials are expected to enable a new generation of miniaturized passive and active optical devices based on novel optical waveguides. In developing design strategies and new concepts for such devices, it is paramount that anisotropic properties of metamaterials are considered along with their other material features. Moreover, even the ways in which common devices operate require revisions when ordinary materials in their design are replaced by anisotropic metamaterials. Therefore, these metamaterials provide a route to creating potential devices through artificially engineered structures with negative average relative permittivity and permeability. The electromagnetic response of a metamaterial can be designed to produce desired waveguide properties. One particularly interesting metamaterial device is planar metamaterial waveguide structure that has potentially exciting applications. Properties of metamaterial waveguides when the limitations arise from fabrication techniques and physical principles have been taken into account. A considerable amount of theoretical effort has also been devoted to the analysis of optical propagation through different types of metamaterial structures, including uniaxial dielectrics and indefinite media, metal–dielectric heterostructures and superlattices, as well as strongly anisotropic waveguides. This chapter will give a brief review about perspective and prospective of the metamaterial optical waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Naib IAI et al (2008) Thin-film sensing with planar asymmetric metamaterial resonators. Appl Phys Lett 93:083507–0835010

    Article  ADS  Google Scholar 

  • Bayatpur F (2009) Metamaterial-inspired frequency-selective surfaces. PhD dissertation, University of Michigan, Ann Arbor

    Google Scholar 

  • Boltasseva A, Shalaev VM (2008) Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2:1–17

    Article  ADS  Google Scholar 

  • Chang YT (2010) A multi-functional plasmonic biosensor. Opt Express 18:9561–9569

    Article  ADS  Google Scholar 

  • Chaturvedi P (2009) Optical metamaterials: design, characterization and applications. PhD dissertation, University of Illinois at Urbana-Champaign

    Google Scholar 

  • Chen Z et al (2004) Two- and three dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Adv Mater 16:417

    Article  Google Scholar 

  • Chen T, Li S, Sun H (2012) Metamaterials application in sensing. Sensors 12:2742–2765

    Article  Google Scholar 

  • Christian D et al (2008) Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett 91:184102–184104

    Google Scholar 

  • Drezet A et al (2007) Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys Rev Lett 98:209730

    Article  Google Scholar 

  • Fan et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  ADS  Google Scholar 

  • Formanek F et al (2006) Selective electroless plating to fabricate complex three-dimentional metallic micro/nanostructures. Appl Phys Lett 88:083110

    Article  ADS  Google Scholar 

  • Galisteo JF et al (2005) Self-assembly approach to optical metamaterials. J Opt A Pure Appl Opt 7:S244–S254

    Article  ADS  Google Scholar 

  • Houck AA et al (2003) Experimental observations of a left-handed material that obeys Snell’s law. Phys Rev Lett 90:137401

    Article  ADS  Google Scholar 

  • Kabashin AV et al (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    Article  ADS  Google Scholar 

  • Kehagias N et al (2007) Reverse-contact UV nanoimprint lithography for multilayered structure fabrication. Nanotechnology 18:175303–175304

    Article  ADS  Google Scholar 

  • Kim KY (2004) Guided and leaky modes of circular open electromagnetic waveguides: dielectric, plasma, and metamaterial columns. PhD dissertation, Kyungpook national University

    Google Scholar 

  • Lavoie BR et al (2012) Low-loss surface modes and lossy hybrid modes in metamaterial waveguides. Photonics Nanostruct 10(4):602–614

    Article  ADS  Google Scholar 

  • Liu Y, Zhang X (2011) Metamaterials: a new frontier of science and technologies. Chem Soc Rev 40:2494–2507

    Article  Google Scholar 

  • Liu Z et al (2007a) Far-field optical superlens. Nano Lett 7:403–408

    Article  ADS  Google Scholar 

  • Liu Z et al (2007b) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686

    Article  ADS  Google Scholar 

  • Logeeswaran VJ et al (2006) Self-assembled microfabrication technology for 3D isotropic negative index materials. Proc SPIE 6393:639305–639310

    Article  Google Scholar 

  • Martin F et al (2003) Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators. IEEE Microw Wirel Compon Lett 13:511–513

    Article  Google Scholar 

  • Maslovski SI, Silveirinha MG (2010) Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials. Phys Rev A 82:022511

    Article  ADS  Google Scholar 

  • Melik R et al (2010) Nested metamaterials for wireless strain sensing. IEEE J Sel Top Quantum Electron 16:450–458

    Article  Google Scholar 

  • Melville D, Blaikie R (2005) Super-resolution imaging through a planar silver layer. Opt Express 13:2127–2134

    Article  ADS  Google Scholar 

  • Moiseev SA, Kamli AA, Sanders BC (2010) Low-loss nonlinear polaritonics. Phys Rev A 81:033839(1–5)

    Article  ADS  Google Scholar 

  • O’Hara JF et al (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16:1786–1795

    Article  ADS  Google Scholar 

  • Pendry JB (2000) Negtive refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  ADS  Google Scholar 

  • Peng L et al (2007) Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys Rev Lett 98:157403–157406

    Article  ADS  Google Scholar 

  • Ponizovskaya EV, Bratkovsky AM (2009) Negative index materials with gain media for fast modulation. Appl Phys A Mater Sci Process 95:1137–1142

    Article  ADS  Google Scholar 

  • Reza A (2008) The optical properties of metamaterial waveguide structures. Master degree thesis, Queen’s University, Kingston, Ontario, Canada

    Google Scholar 

  • Smith DR et al (2003) Limitations on subdiffraction imaging with a negative refractive index slab. Appl Phys Lett 82:1506–1508

    Article  ADS  Google Scholar 

  • Subramania G, Lin SY (2004) Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography. Appl Phys Lett 85: 5037–5039

    Article  ADS  Google Scholar 

  • Tao H et al (2011) Metamaterials on paper as a sensing platform. Adv Mater 23:3197–3201

    Article  Google Scholar 

  • Wang BN et al (2008) Nonlinear properties of split-ring resonators. Opt Express 16:16058–16063

    Article  ADS  Google Scholar 

  • Weiland T et al (2001) Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments. J Appl Phys 90:5419–5424

    Article  ADS  Google Scholar 

  • Withayachumnankul W et al (2011) Metamaterial inspired multichannel thin-film sensor. IEEE Sens J 99:1–7

    Google Scholar 

  • Wu W et al (2007) Midinfrared metamaterials fabricated by nanoimprint lithography. Appl Phys Lett 90:063107

    Article  ADS  Google Scholar 

  • Xiong Y et al (2007) Tuning the far-field superlens: from UV to visible. Opt Express 15:7095–7102

    Article  ADS  Google Scholar 

  • Yeh C, Shimabukuro F (2008) The essence of dielectric waveguides. Springer, New York

    Book  Google Scholar 

  • Zhang X, Liu Z (2008) Superlenses to overcome the difrrraction limit. Nat Mater 7:435–440

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tong, X.C. (2014). Metamaterial Optical Waveguides. In: Advanced Materials for Integrated Optical Waveguides. Springer Series in Advanced Microelectronics, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-01550-7_11

Download citation

Publish with us

Policies and ethics