Skip to main content

Sparse Constraints Over Animatable Subspaces

  • Chapter
  • First Online:
Cage-based Performance Capture

Part of the book series: Studies in Computational Intelligence ((SCI,volume 509))

  • 547 Accesses

Abstract

In this chapter, we present a cage-based inversion process for modeling tasks. This novel core methodology estimates coherent enclosed model deformation via sparse positional constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Mcinerney, D. Terzopoulos, Deformable models in medical image analysis: a survey. Med. Image Anal. 1, 91–108 (1996)

    Article  Google Scholar 

  2. D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, Elastically deformable models, in SIGGRAPH ’87, 1987, pp. 205–214.

    Google Scholar 

  3. J. Barbič, M. Silva, J. Popović, Deformable object animation using reduced optimal control, in SIGGRAPH ’09, 2009.

    Google Scholar 

  4. B. Adams, M. Ovsjanikov, M. Wand, H-P. Seidel, L. J. Guibas, Meshless modeling of deformable shapes and their motion, in SCA ’08, 2008, pp. 77–86.

    Google Scholar 

  5. U. Güdükbay, B. Ozguc, Animating deformable models: different approaches, in Proceedings of the Computer, Animation, 1995.

    Google Scholar 

  6. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  7. R. W. Sumner, J. Schmid, and M. Pauly. Embedded deformation for shape manipulation. ACM Trans. Graph. 26(3), 80:1–80:7 (2007).

    Google Scholar 

  8. M. Wardetzky, S. Mathur, F. Kälberer, E. Grinspun, Discrete laplace operators: no free lunch, in SGP’07: Proceedings of the fifth Eurographics Symposium on Geometry Processing, 2007, pp. 33–37.

    Google Scholar 

  9. Y. Lipman, O. Sorkine, D.C. Or, D. Levin, C. Rössl, H-P. Seidel, Differential coordinates for interactive mesh editing, in Proceedings of International Shape Modeling 2004, 181–190 (2004)

    Google Scholar 

  10. O. Sorkine, Differential representations for mesh processing. Comput. Graph. Forum 25, 789–807 (2006).

    Google Scholar 

  11. Y. Lipman, O. Sorkine, M. Alexa, D.C. Or, D. Levin, C. Rössl, H-P. Seidel, Laplacian framework for interactive mesh editing. Int. J. Shape Model. textbf11(1), 43–61 (2005).

    Google Scholar 

  12. A. Nealen, T. Igarashi, O. Sorkine, M. Alexa, FiberMesh: designing freeform surfaces with 3D curves, in Proceedings of ACM SIGGRAPH (ACM Trans, Graph, 2007)

    Google Scholar 

  13. R. Gal, O. Sorkine, N.J. Mitra, D.C. Or, iwires: an analyze-and-edit approach to shape manipulation. ACM Trans. Graph. Siggraph 28(3), 1–10 (2009)

    Article  Google Scholar 

  14. O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling, in Symposium on Geometry Processing, 2007, pp. 109–116.

    Google Scholar 

  15. O.K-C. Au, C-L. Tai, L. Liu, H. Fu, Dual laplacian editing for meshes. IEEE Trans. Visual Comput. Graphics textbf12(3), 386–395 (2006).

    Google Scholar 

  16. Q. Luo, B. Liu, Z. Ma, H. Zhang, Mesh editing in roi with dual laplacian, in CGIV ’07: Proceedings of the Computer Graphics, Imaging and Visualisation, 2007, pp. 195–199.

    Google Scholar 

  17. N. Thalmann, R. Laperrière, D. Thalmann, Joint-dependent local deformations for hand animation and object grasping, in Proceedings on Graphics, Interface ’88, 1988, pp. 26–33.

    Google Scholar 

  18. I. Baran, J. Popović, Automatic rigging and animation of 3d characters, in ACM SIGGRAPH 2007 papers, 2007.

    Google Scholar 

  19. C. Miller, O. Arikan, D. Fussell, Frankenrigs: building character rigs from multiple sources, in Proceedings of I3D’10, 2010, pp. 31–38.

    Google Scholar 

  20. O. Weber, O.Sorkine, Y. Lipman, C. Gotsman, Context-aware skeletal shape deformation, in Proceedings of Eurographics, Compute. Graph. Forum (2007).

    Google Scholar 

  21. A. Jacobson, O. Sorkine, Stretchable and twistable bones for skeletal shape deformation, in Proceedings of ACM SIGGRAPH ASIA, ACM Trans. Graph. 30(6), (2011).

    Google Scholar 

  22. L. Kavan, S. Collins, Jiří Žára, C. O’Sullivan, Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27(4), 105 (2008)

    Article  Google Scholar 

  23. A.M. Adams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, E. Sifakis, Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30(4), (2011).

    Google Scholar 

  24. T.W. Sederberg, S.R. Parry, Free-form deformation of solid geometric models, in SIGGRAPH ’86, 1986, pp. 151–160.

    Google Scholar 

  25. S. Coquillart, P. Jancéne, Animated free-form deformation: an interactive animation technique, in SIGGRAPH, 1991 (Comput, Graph, 1991)

    Google Scholar 

  26. R. MacCracken K.I. Joy, Free-form deformations with lattices of arbitrary topology, in SIGGRAPH ’96, 1996, pp. 181–188.

    Google Scholar 

  27. K.G. Kobayashi, K. Ootsubo, t-ffd: free-form deformation by using triangular mesh, in Proceedings of the eighth ACM Symposium on Solid Modeling and Applications, 2003, pp. 226–234.

    Google Scholar 

  28. R.W. Sumner, M. Zwicker, C. Gotsman, J. Popović, Mesh-based inverse kinematics. ACM Trans. Graph. 24(3), 488–495 (2005)

    Article  Google Scholar 

  29. J. Huang, X. Shi, X. Liu, K. Zhou, L-Y. Wei, S-H. Teng, H. Bao, B. Guo, H-Y. Shum, Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3), 1126–1134 (2006)

    Article  Google Scholar 

  30. K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, H-Y. Shum, Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24, 496–503 (2005)

    Article  Google Scholar 

  31. K.G. Der, R.W. Sumner, J. Popović, Inverse kinematics for reduced deformable models, in SIGGRAPH ’06: ACM SIGGRAPH. Papers 2006, 1174–1179 (2006)

    Google Scholar 

  32. T. Ju, S. Schaefer, J. Warren, Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)

    Article  Google Scholar 

  33. C. Xian, H. Lin, S. Gao, Automatic generation of coarse bounding cages from dense meshes, in Shape Modeling, International, 2009, 2009.

    Google Scholar 

  34. M. B-Chen, O. Weber, C. Gotsman, Variational harmonic maps for space deformation (ACM Trans, Graph, 2009)

    Google Scholar 

  35. Z.-J. Deng, X.-N. Luo, X-P. Miao. Automatic cage building with quadric error metrics. J. Comput. Sci. Technol. 26(3), 538–547 (2011)

    Article  Google Scholar 

  36. C. Xian, H. Lin, S. Gao, Automatic cage generation by improved obbs for mesh deformation. Vis. Comput. 28(1), 21–33 (2012)

    Article  Google Scholar 

  37. T. Ju, Q.-Y. Zhou, M. Panne, D.C. Or, U. Neumann, Reusable skinning templates using cage-based deformations. ACM Trans. Graph. 27(4), 1–23 (2008)

    Article  Google Scholar 

  38. J. Kosinka, M. Barton, Injective shape deformations using cube-like cages. Comput. Aided. Des. Appl. 7(3), 309–318 (2010)

    Google Scholar 

  39. Y. Zhao, X-G. Liu, Q-S. Peng, H-J. Bao, Rigidity constraints for large mesh deformation. J. Comput. Sci. Technol. 24, (2009).

    Google Scholar 

  40. M. Meyer, H. Lee, A. Barr, M. Desbrun, Generalized barycentric coordinates on irregular polygons. J. Graph. Tools. 7(1), 13–22 (2002)

    Article  MATH  Google Scholar 

  41. P. Joshi, M. Meyer, T.D. Rose, B. Green, T. Sanocki, Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3) (2007).

    Google Scholar 

  42. Y. Lipman, D. Levin, D.C. Or, Green coordinates. ACM Trans. Graph. 27(3) (2008).

    Google Scholar 

  43. Y. Lipman, J. Kopf, D. C. Or, D. Levin, Gpu-assisted positive mean value coordinates for mesh deformations, in SGP, 2007, pp. 117–123.

    Google Scholar 

  44. X.-Y. Li, S.-M. Hu, Poisson coordinates. IEEE Trans. Visual Comput. Graphics 19(2), 344–352 (2012)

    Google Scholar 

  45. T. Langer, H.-P. Seidel, Higher order barycentric coordinates. Comput. Graph. Forum 27(2), 459–466 (2008)

    Article  Google Scholar 

  46. T.D. Rose, M. Meyer, Harmonic coordinates (Pixar Technical Memo, Pixar Animation Studios, 2006)

    Google Scholar 

  47. M.R. Rustamov, Boundary element formulation of harmonic coordinates, Technical report, (2008).

    Google Scholar 

  48. C-A. Lin, E. Miller, G.S. Lee, ibind: smooth indirect binding using segmented thin-layers, in SIGGRAPH Talks, 2009.

    Google Scholar 

  49. A. Jacobson, I. Baran, J. Popović, O. Sorkine, Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30 (2011).

    Google Scholar 

  50. O. Weber, C. Gotsman, Controllable conformal maps for shape deformation and interpolation, in ACM SIGGRAPH 2010 papers, SIGGRAPH ’10 vol 29 (2010).

    Google Scholar 

  51. O. Weber, R. Poranne, C. Gotsman, Biharmonic coordinates. Comput. Graph. Forum. 31(8), 2409–2422 (2012)

    Google Scholar 

  52. E. Landreneau, S. Schaefer, Poisson-based weight reduction of animated meshes. Comput. Graph. Forum. 29, 1945–1954 (2010)

    Article  Google Scholar 

  53. A. Jacobson, T. Weinkauf, O. Sorkine, Smooth shape-aware functions with controlled extrema. Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Comput. Graph. Forum. 31(5), 1577–1586 (2012)

    Google Scholar 

  54. Z. Li, D. Levin, Z. Deng, D. Liu, X. Luo, Cage-free local deformations using green coordinates. Vis. Comput. 26, 1027–1036 (2010)

    Article  Google Scholar 

  55. M.B. Chen, O. Weber, C. Gotsman. Spatial deformation transfer, in Proceedings of the SCA’09, 2009 pp. 67–74.

    Google Scholar 

  56. L. Chen, J. Huang, H. Sun, H. Bao, Cage-based deformation transfer. Comput. Graph. 34, 107–118 (2010)

    Article  Google Scholar 

  57. D.C. Or, Space deformations, surface deformations and the opportunities in-between. J. Comput. Sci. Technol. 24(1), 2–5 (2009)

    Article  Google Scholar 

  58. S. Zhang, P. Borosan, R. Howard, A. Nealen. Hybrid mesh editing, in Proceedings of Eurographics 2010 (short papers), Sweden, (2010).

    Google Scholar 

  59. M. Desbrun, M. Meyer, P. Schröder, A.H. Barr. Implicit fairing of irregular meshes using diffusion and curvature flow, in SIGGRAPH, 1999 pp. 317–324.

    Google Scholar 

  60. O. Sorkine, D.C. Or, Least-squares meshes, in Shape Modeling. International 2004, 191–199 (2004)

    Google Scholar 

  61. M. Botsch, D. Bommes, L. Kobbelt, Efficient linear system solvers for mesh processing, in IMA Conference on the Mathematics of Surfaces, 2005 pp. 62–83.

    Google Scholar 

  62. J. Kwon, I.-K. Lee, Rubber-like exaggeration for character animation, in Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, 2007 pp. 18–26.

    Google Scholar 

  63. J.W. Davis, V.S. Kannappan, Expressive features for movement exaggeration, in SIGGRAPH ’02, 2002 pp. 182–182.

    Google Scholar 

  64. C. Bregler, L. Loeb, E. Chuang, H. Deshpande, Turning to the masters: motion capturing cartoons, in SIGGRAPH ’02, 2002 pp 399–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Savoye .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savoye, Y. (2014). Sparse Constraints Over Animatable Subspaces. In: Cage-based Performance Capture. Studies in Computational Intelligence, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-319-01538-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01538-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01537-8

  • Online ISBN: 978-3-319-01538-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics