Advertisement

Spin Torque and Zeta Force in Allene-Type Molecules

  • Masahiro Fukuda
  • Masato Senami
  • Akitomo TachibanaEmail author
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)

Abstract

The spin torque, the zeta force, and the zeta potential, which are significant quantities to describe the local picture of spin dynamics, are studied by using allene-type molecules (C3H4 and C3H2Li2) in their stationary states. We show that the two molecules have different distribution patterns of these quantities though their structures are very similar to each other. It is also shown that the zeta potential distribution is almost independent of the electron density distribution.

Keywords

Zeta Potential Alkali Metal Atom Relativistic Quantum Mechanic Heisenberg Equation Relativistic Quantum Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (22550011). M.S. is supported by a Grant-in-Aid for Young Scientists (B) from JSPS (24760028) and Mizuho Foundation for the Promotion of Sciences.

References

  1. 1.
    Tachibana A (2001) J Chem Phys 115:3497 CrossRefGoogle Scholar
  2. 2.
    Tachibana A (2003) In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, a tribute to the memory of Per-Olov Löwdin, vol 2. Kluwer Academic, Dordrecht, p 211 Google Scholar
  3. 3.
    Tachibana A (2005) J Mol Model 11:301 CrossRefGoogle Scholar
  4. 4.
    Tachibana A (2010) J Mol Struct, Theochem 943:138 CrossRefGoogle Scholar
  5. 5.
    Doi K, Nakamura K, Tachibana A (2006) In: International workshop on nano CMOS. IEEE Press, New York, pp 209–235 Google Scholar
  6. 6.
    Doi K, Mikazuki Y, Sugino S, Doi T, Szarek P, Senami M, Shiraishi K, Iwai H, Umezawa N, Chikyo T, Yamada K, Tachibana A (2008) Jpn J Appl Phys 47:205 CrossRefGoogle Scholar
  7. 7.
    Szarek P (2008) PhD dissertation, Kyoto University Google Scholar
  8. 8.
    Fukushima A, Tsuchida Y, Senami M, Tachibana A (2010) Jpn J Appl Phys 49:111504 CrossRefGoogle Scholar
  9. 9.
    Fukushima A, Sugino S, Tsuchida Y, Senami M, Tachibana A (2010) Jpn J Appl Phys 49:121504 CrossRefGoogle Scholar
  10. 10.
    Senami M, Tsuchida Y, Fukushima A, Ikeda Y, Tachibana A (2012) Jpn J Appl Phys 51:031101 CrossRefGoogle Scholar
  11. 11.
    Senami M, Ikeda Y, Fukushima A, Tachibana A (2010) Jpn J Appl Phys 49:115002 CrossRefGoogle Scholar
  12. 12.
    Senami M, Ikeda Y, Tachibana A (2011) Jpn J Appl Phys 50:010103 CrossRefGoogle Scholar
  13. 13.
    Senami M, Ikeda Y, Tachibana A (2012) AIP Adv 2:042168. CrossRefGoogle Scholar
  14. 14.
    Senami M, Ikeda Y, Tachibana A (2013) To be pulished in J Phys Conf Ser Google Scholar
  15. 15.
    Senami M, Nishikawa J, Hara T, Tachibana A (2010) J Phys Soc Jpn 79:084302 CrossRefGoogle Scholar
  16. 16.
    Hara T, Senami M, Tachibana A (2012) Phys Lett A 376:1434 CrossRefGoogle Scholar
  17. 17.
    Szarek P, Tachibana A (2007) J Mol Model 13:651 CrossRefGoogle Scholar
  18. 18.
    Szarek P, Sueda Y, Tachibana A (2008) J Chem Phys 129:94102 CrossRefGoogle Scholar
  19. 19.
    Szarek P, Urakami K, Zhou C, Cheng H, Tachibana A (2009) J Chem Phys 130:084111 CrossRefGoogle Scholar
  20. 20.
    Tachibana A (2001) J Chem Phys 115:3497 CrossRefGoogle Scholar
  21. 21.
    Tachibana A (2003) In: Brändas E, Kryachko E (eds) Fundamental perspectives in quantum chemistry: a tribute to the memory of Per-Olov Löwdin, vol 2. Kluwer Academic, Dordrecht, pp 211–239 Google Scholar
  22. 22.
    Tachibana A (2004) Int J Quant Chem 100:981 CrossRefGoogle Scholar
  23. 23.
    Messiah A (1961) Quantum mechanics. North-Holland, New York Google Scholar
  24. 24.
    Sakurai JJ (1967) Advanced quantum mechanics. Addison-Wesley, Reading Google Scholar
  25. 25.
    DIRAC, a relativistic ab initio electronic structure program, Release DIRAC11 (2011), written by R. Bast, H. J. Aa. Jensen, T. Saue, and L. Visscher, with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Lærdahl, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, J. Olsen, J. K. Pedersen, M. Pernpointner, K. Ruud, P. Sałek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (see http://dirac.chem.vu.nl)
  26. 26.
    Dunning TH Jr (1989) J Chem Phys 90:1007 CrossRefGoogle Scholar
  27. 27.
    Saue T, Fægri K, Helgaker T, Gropen O (1997) Mol Phys 91:937 Google Scholar
  28. 28.
    Senami M, Ichikawa K, Tachibana A, QEDynamics (http://www.tachibana.kues.kyoto-u.ac.jp/qed)
  29. 29.
    Ichikawa K, Fukuda M, Tachibana A (2012) Int J Quant Chem 113:190 CrossRefGoogle Scholar
  30. 30.
    Senami M, Miyazato T, Takada S, Ikeda Y, Tachibana A (2013) To be published in J Phys Conf Ser Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Masahiro Fukuda
    • 1
  • Masato Senami
    • 1
  • Akitomo Tachibana
    • 1
    Email author
  1. 1.Department of Micro-EngineeringKyoto UniversityKyotoJapan

Personalised recommendations