Skip to main content

Application of the Uniformly Charged Sphere Stabilization for Calculating the Lowest 1 S Resonances of H

  • Conference paper

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 27))

Abstract

The uniformly charged sphere stabilization method has been used to calculate the lowest 1 S resonances of H . It was shown that this method is sensitive to the choice of basis set and parameters of the stabilization potential. The conclusion on the suitability of this method for calculating resonance energies and widths is based on the analysis of our computational results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nicolaides CA (2010) Theory and state-specific methods for the analysis and computation of field-free and field-induced unstable states in atoms and molecules. In: Nicolaides CA, Brändas E (eds) Unstable states in the continuous spectra, Part I: analysis, concepts, methods, and results. Advances in quantum chemistry, vol 60. Elsevier, Amsterdam, pp 163–267, and references therein

    Chapter  Google Scholar 

  2. Moiseyev N (2011) Non-Hermitian quantum mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Nicolaides CA, Brändas E (eds) (2012) Unstable states in the continuous spectra, Part II: interpretation, theory and applications. Advances in quantum chemistry, vol 63. Elsevier, Amsterdam

    Google Scholar 

  4. Sabelli NH, Gislason EA (1984) SCF study of the lowest \(^{2}\varSigma_{u}^{+}\) resonance of \({H}_{2}^{-}\). J Chem Phys 81:4002–4007

    Article  CAS  Google Scholar 

  5. DeRose E, Gislason EA, Sabelli NH (1985) A new method for computing properties of negative ion resonances with application to \(^{2}\varSigma_{u}^{+}\) states of \(H_{2}^{-}\). J Chem Phys 82:4577–4584

    Article  CAS  Google Scholar 

  6. Chao JS-Y, Falcetta MF, Jordan KD (1990) Application of the stabilization method to the \({N}_{2}^{-} (1^{2}\varPi_{g} )\) and Mg (12 Π) temporary anion states. J Chem Phys 93:1125–1135

    Article  CAS  Google Scholar 

  7. Izmaylov AF, Adamson SO, Zaitsevskii A (2004) Multipartitioning many-body perturbation theory calculations on temporary anions: applications to \({N}_{2}^{-}\) and CO . J Phys B, Atom Mol Phys 37:2321–2329

    Article  CAS  Google Scholar 

  8. Izmaylov AF, Shchegoleva LN, Scuseria GE, Zaitsevskii A (2005) Ab initio study of temporary anions of benzene and fluorobenzenes using the multipartitioning many-body perturbation theory. Phys Chem Chem Phys 7:3933–3937

    Article  CAS  Google Scholar 

  9. Adamson S et al. (2007) Multiscale multiphysics non-empirical approach to calculation of light emission properties of chemically active non-equilibrium plasma: application to Ga-I3 system. J Phys D, Appl Phys 40:3857–3881

    Article  CAS  Google Scholar 

  10. Simons J (2008) Molecular anions. J Phys Chem A 112:6401–6511, and references therein

    Article  CAS  Google Scholar 

  11. Adamson SO, Deminskii MA et al. (2010) The role of dissociative electron attachment to metal halides in a low pressure glow discharge. Russ J Phys Chem B 4:1–7

    Article  Google Scholar 

  12. Simons J (2011) Theoretical study of negative molecular ions. Annu Rev Phys Chem 62:107–128, and references therein

    Article  CAS  Google Scholar 

  13. Watson RE (1958) Analytic Hartree-Fock solutions for \({O}_{2}^{-}\). Phys Rev 111:1108–1110

    Article  CAS  Google Scholar 

  14. Liebman JF, Yeager DL, Simons J (1977) A simple approach to predicting resonance levels. Chem Phys Lett 48:227–232

    Article  CAS  Google Scholar 

  15. Hazi AU, Taylor HS (1970) Stabilization method of calculating resonance energies: model problem. Phys Rev A 1:1109–1120

    Article  Google Scholar 

  16. Lefebvre R (1985) Box quantization and resonance determination: the multichannel case. J Phys Chem 89:4201–4206

    Article  CAS  Google Scholar 

  17. Kukulin VI, Krasnopolsky VM, Horác̆ek J (1989) Resonances in atomic physics. In: Kukulin VI, Krasnopolsky VM, Horác̆ek J (eds) Theory of resonances. Principles and applications. Academia, Praha, pp 303–340, and references therein

    Google Scholar 

  18. Adamson S, Kharlampidi D, Dementiev A (2008) Stabilization of resonance states by an asymptotic Coulomb potential. J Chem Phys 128:024101, and references therein

    Article  CAS  Google Scholar 

  19. Kharlampidi DD, Dementiev AI, Adamson SO (2010) Using of stabilization by uniformly charged sphere for resonance states calculations. Russ J Phys Chem A 84:611–616

    Article  CAS  Google Scholar 

  20. Adamson SO, Kharlampidi DD, Dement’ev AI (2011) Calculation of the parameters of resonance states using stabilization with non-Coulomb potentials. Russ J Phys Chem B 5:915–920

    Article  CAS  Google Scholar 

  21. Jolicard G, Austin E (1986) Optical potential method of calculating resonance energies and widths. Chem Phys 103:295–302

    Article  CAS  Google Scholar 

  22. Jolicard G, Leforestier C, Austin E (1988) Resonance states using the optical potential model. Study of Feshbach resonances and broad shape resonances. J Chem Phys 88:1026–1031

    Article  CAS  Google Scholar 

  23. Callaway J (1978) The variational method in atomic scattering. Phys Rep 45:89–173, and references therein

    Article  CAS  Google Scholar 

  24. Ho YK (1981) Complex-coordinate calculations for doubly excited states of two-electron atoms. Phys Rev A 23:2137–2149

    Article  CAS  Google Scholar 

  25. Pathak A, Kingston AE, Berrington KA (1988) Resonances in H associated with the n=2,3 and 4 hydrogenic thresholds. J Phys B, At Mol Opt Phys 21:2939–2951

    Article  CAS  Google Scholar 

  26. Scholz T, Scott P, Burke PG (1988) Electron-hydrogen-atom scattering at intermediate energies. J Phys B, Atom Mol Phys 21:L139–LI45

    Article  CAS  Google Scholar 

  27. Ho YK (1990) High-lying doubly excited states of H . J Phys B, At Mol Opt Phys 23:L71–L78

    Article  CAS  Google Scholar 

  28. Botero J, Shertzer J (1992) Direct numerical solution of the Schrodinger equation for quantum scattering problems. Phys Rev A 46:R1155–R1158

    Article  CAS  Google Scholar 

  29. Sadeghpour HR (1992) Resonant electron-hydrogen atom scattering using hyperspherical coordinate method. J Phys B, At Mol Opt Phys 25:L29–L35

    Article  CAS  Google Scholar 

  30. Shertzer J, Botero J (1994) Finite-element analysis of electron-hydrogen scattering. Phys Rev A 49:3673–3679

    Article  CAS  Google Scholar 

  31. Gien TT (1998) Observation of a triplet D-wave resonance below the n=2 H excitation threshold in electron-hydrogen scattering. J Phys B, At Mol Opt Phys 31:L629–L635

    Article  CAS  Google Scholar 

  32. Gien TT (1998) Feshbach resonances below the n=2 H excitation threshold in electron—hydrogen scattering. J Phys B, At Mol Opt Phys 31:L1001–L1008

    Article  CAS  Google Scholar 

  33. Bylicki M, Nicolaides C (2000) Theoretical resolution of the H resonance spectrum up to the n=4 threshold. II. States of 1 S and 1 D symmetries. Phys Rev A 61:052509

    Article  Google Scholar 

  34. Zhang SB, Wang JG, Janev RK (2010) Electronhydrogen-atom elastic and inelastic scattering with screened Coulomb interaction around the n=2 excitation threshold. Phys Rev A 81:032707

    Article  Google Scholar 

  35. Warner CD, King GC, Hammond P, Slevin J (1986) Resonance structure in elastic scattering of electrons from atomic hydrogen. J Phys B, At Mol Opt Phys 19:3297–3308

    Article  CAS  Google Scholar 

  36. Burke PG, Taylor AJ (1966) Correlation in the elastic and inelastic S-wave scattering of electrons by H and He+. Proc Phys Soc Lond 88:549–562

    Article  CAS  Google Scholar 

  37. Burke PG, Seaton MJ (1971) In: Alder B, Frenbach S, Rotenberg M (eds) Methods in computational physics. Atomic and molecular scattering, vol 10. Academic Press, New York. Chap. 1, and references therein

    Google Scholar 

  38. Harris FE, Michels HH (1971) In: Alder B, Frenbach S, Rotenberg M (eds) Methods in computational physics. Atomic and molecular scattering, vol 10. Academic Press, New York. Chap. 4, and references therein

    Google Scholar 

  39. Matese JJ, Oberoi RS (1971) Choosing pseudostates in the close-coupling formalism for electron-atomic-hydrogen system. Phys Rev A 4:569–579

    Article  Google Scholar 

  40. Abramowitz M, Stegun I (eds) (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. NBS app math series, vol 55. Government Printing Office, Washington

    Google Scholar 

  41. Bateman H, Erdlyi A (1953) Higher transcendental functions, vols 1, 2. McGraw-Hill, New-York

    Google Scholar 

  42. O-ohata K, Taketa H, Huzinaga S (1966) Gaussian expansions of atomic orbitals. J Phys Soc Jpn 21:2306–2313

    Article  CAS  Google Scholar 

  43. Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) Self-consistent molecular orbital methods. IV. Use of Gaussian expansions of Slater-type orbitals. Extension to second-row molecules. J Chem Phys 52:2769–2773

    Article  CAS  Google Scholar 

  44. Widmark P-O, Persson BJ, Roos BO (1991) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor Chim Acta 79:419–432

    Article  CAS  Google Scholar 

  45. Sadlej AJ (1992) Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. Theor Chim Acta 81:339–354

    Article  CAS  Google Scholar 

  46. Wallis A, McElwain DLS, Pritchard HO (1969) The variation method and the algebraic eigenvalue problem. Int J Quant Chem 3:711–722

    Article  CAS  Google Scholar 

  47. Moncrieff D, Wilson S (2005) Computational linear dependence in molecular electronic structure calculations using universal basis sets. Int J Quant Chem 101:363–371, and references therein

    Article  CAS  Google Scholar 

  48. Yoshida T (1995) Computation of Kummer functions U(a,b,x) for large argument x by using the τ-method. Inf Process Soc Jpn 36:2335–2342

    Google Scholar 

  49. Temme NM (1983) The numerical computation of the confluent hypergeometric function U(a,b,z). Numer Math 41:63–82

    Article  Google Scholar 

  50. Maier CH, Cederbaum LS (1980) A spherical-box approach to resonances. J Phys B, Atom Mol Phys 13:L119–L124

    Article  CAS  Google Scholar 

  51. Gersbacher R, Broad JT (1990) Resonances in helium photoionisation. J Phys B 23:365–384

    Article  CAS  Google Scholar 

  52. Guseinov II, Mamedov BA (2004) Evaluation of incomplete Gamma functions using downward recursion and analytical relations. J Math Chem 36:341–346

    Article  CAS  Google Scholar 

  53. Eyring H, Walter J, Kimball GE (1944) Quantum chemistry. Wiley, New York

    Google Scholar 

  54. Holøien E, Midtdal J (1955) On a metastable energy state of the negative helium ion. Proc Phys Soc A 68:815–823

    Article  Google Scholar 

  55. Condon EU, Shortley GH (1959) The theory of atomic spectra, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  56. Schwartz C (1962) Importance of angular correlations between atomic electrons. Phys Rev 126:1015–1019

    Article  CAS  Google Scholar 

  57. Goldman SP (1997) Accurate modified configuration interaction calculations for many electron systems made easy. Phys Rev Lett 78:2325–2328, and references therein

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study has been carried out with the financial support of the Russian Foundation for Basic Research, grant No. 12-03-00821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Adamson .

Editor information

Editors and Affiliations

Appendix: Calculation of Matrix Elements for One- and Two-Electron Operators

Appendix: Calculation of Matrix Elements for One- and Two-Electron Operators

The matrix elements of the one-electron operators can be written as

$$\begin{aligned} \bigl\langle n'l'm'\bigr| \frac{1}{r}|nlm\rangle =&\frac {1}{b^2}Q_{n'l'nl}^{l'+l+1}(0)N_{n'l'}N_{nl} \delta_{l'l}\delta_{m'm} , \end{aligned}$$
(5.18)
$$\begin{aligned} \bigl\langle n'l'm'\bigr|- \frac{1}{2}\varDelta|nlm\rangle =& -\frac{1}{2b} \biggl\{ \frac {1}{4}Q_{n'l'nl}^{l'+l+2}(0)-(n+l+1)Q_{n'l'nl}^{l'+l+1}(0) \\ &{}-nQ_{n'l'nl}^{l'+l}(0)+(n+2l+2)Q_{n'l'n-1l}^{l'+l}(0) \biggr\} N_{n'l'}N_{nl} \delta_{l'l} \delta_{m'm}, \end{aligned}$$
(5.19)
$$\begin{aligned} \bigl\langle n'l'm'\bigr|V_{st}(r)|nlm \rangle =&\frac{V_0}{b^3} \bigl\{ Q_{n'l'nl}^{l'+l+2}(bR) -bRQ_{n'l'nl}^{l'+l+1}(bR) \bigr\}N_{n'l'}N_{nl} \delta_{l'l}\delta_{m'm}, \end{aligned}$$
(5.20)

where \(Q_{n'l'nl}^{m}(x)\) is the auxiliary integral

$$ Q_{n'l'nl}^m(x)=\int_x^{\infty} \mathrm{e}^{-z}z^m L_{n'}^{2l'+2}(z) L_{n}^{2l+2}(z) dz . $$
(5.21)

For the calculation of integrals (5.18)–(5.20) the method based on the recurrence relation for product of Laguerre polynomials has been used [51]. The main relation of this method can be obtained by substituting the recursion \((n+1)L_{n+1}^{k}(z)-(2n+k+1-z)L_{n}^{k}(z)+(n+k)L_{n-1}^{k}(z)=0\) [40] for \(L_{n}^{2l+2}\) or \(L_{n'}^{2l'+2}\) polynomial in (5.21) which gives two different three-term recursions for integrals over the indexes n and n′. Elimination of the integral \(Q_{n'l'nl}^{m+1}(x)\) from the both recursions leads to the new relation

$$\begin{aligned} nQ_{n'l'nl}^{m}(x) =&\bigl(n'+1 \bigr)Q_{n'+1l'n-1l}^{m}(x)+\bigl(n'+2l'+2 \bigr)Q_{n'-1l'n-1l}^{m}(x) \\ &{}- (n+2l+1)Q_{n'l'n-2l}^{m}(x)+2\bigl(n+l-n'-l'-1 \bigr)Q_{n'l'n-1l}^{m}(x). \end{aligned}$$
(5.22)

This relation is applied for construction of the ascending recursion which starts from the elements \(Q_{kl0l}^{m}(x)\) with n′−n+1≤kn′+n−1 and finishes at \(Q_{n'lnl}^{m}(x)\) (assume that nn′). The integrals with m=2l+2 and x=0 can be evaluated directly using the orthogonality relation

$$ Q_{n'lnl}^{2l+2}(0)=\frac{(n+2l+2)!}{n!} \delta_{n'n} . $$
(5.23)

For integrals with m<2l+2 and x=0 the recursion (5.22) is initialized by the elements

$$\begin{aligned} Q_{0l0l}^{m}(0) =&m! , \end{aligned}$$
(5.24)
$$\begin{aligned} Q_{1l0l}^{m}(0) =&Q_{0l1l}^{m}(0)=m!(2l+2-m), \end{aligned}$$
(5.25)
$$\begin{aligned} Q_{1l1l}^{m}(0) =&m! \bigl( (m+1) (m+2)-2(m+1) (2l+3)+(2l+3)^2 \bigr) . \end{aligned}$$
(5.26)

All elements \(Q_{kl0l}^{m}(0)\) needed for the evaluation of integrals (5.18) and (5.19) are calculated by means of the special three-term recursion \((n'+1)Q_{n'+1l0l}^{m}(x)-(2n'+2l+1)Q_{n'l0l}^{m}(x)+(2n'+2l+1)Q_{n'l0l}^{m+1}(x) +(n'+2l+2)Q_{n'-1l0l}^{m}(x)=0\).

The case of the integrals (5.20) is more complicate. The elements \(Q_{n'l0l}^{m}(x)\) and \(Q_{n'l1l}^{m}(x)\) (m=2l+2 or m=2l+1) needed for the initializing (5.21) can be taken analytically

$$ Q_{n'lnl}^{m}(x)=\sum _{t=0}^{n'+n}\varGamma(m+t+1,x)W_t \bigl(n',l',n,l\bigr) , $$
(5.27)

where \(\varGamma(a,x)=\int_{x}^{\infty}z^{a-1}\mathrm{e}^{-z}dz\)—incomplete gamma function, W t (n′,l,n,l)—coefficient of the term z t in the product of two associated Laguerre polynomials. This coefficient is calculated by the formula

$$ W_t \bigl(n',l',n,l\bigr)=\sum _{u=0}^{u\le n, t-u\le n'}\frac{(-1)^t(n'+v)!(n+v)!}{ u!(t-u)!(n'-t+u)!(n-u)!(v'+t-u)!(v+u)!} . $$
(5.28)

In this formula v=2l+2 and v′=2l′+2. The function Γ(a,x) from expression (5.27) can be derived analytically at the integer values of parameter a. For this purpose the function is represented as the product Γ(a,x)=ex x a g(a,x), where g(a,x)—the auxiliary function defined for the a=1 as g(1,x)=1/x. This representation allows to use the standard recurrence relation for incomplete gamma function Γ(a+1,x)=(a,x)+ex x a by \(g(a+1,x)=\frac{a}{x}g(a,x)+\frac{1}{x}\) with the minimal numerical error [52]. The analytical method of calculation is suitable for integrals with n′≤23, that one can see by the comparison of the values obtained from the formula (5.27) with ones obtained by Gauss-Laguerre integration. For the integrals with n′>23 the quadrature method was applied.

During the calculation of electron-electron repulsion integrals the operator 1/r 12 can be represented by the series

$$ \frac{1}{r_{12}}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\frac{4\pi }{2l+1}Y_{lm}( \hat{r}_1) Y_{lm}^{*}(\hat{r}_2) \frac{r_{<}^l}{r_{>}^{l+1}} , $$
(5.29)

where r <=min(r 1,r 2) and r >=max(r 1,r 2) [5357]. With this expression the two-electron integral is

$$\begin{aligned} &\bigl\langle n'_1 l'_1 m'_1 n'_2 l'_2 m'_2\bigr| \frac{1}{r_{12}}|n_1l_1m_1n_2l_2m_2 \rangle \\ &\quad= N_{n'_1l'_1}N_{n'_2l'_2}N_{n_1l_1}N_{n_2l_2}b^{-5} \sum_{L=0}^{\infty }R_L\sum _{M=-L}^{L}D_{LM} , \end{aligned}$$
(5.30)

where R L —radial integral in the form

$$ R_L=\int_0^{\infty} \int_0^{\infty}dxdy f_1(x)f_2(y) \frac{x_{<}^L}{x_{>}^{L+1}} , $$
(5.31)

in which variables r 1, r 2 and r </> are replaced by x, y and x </>, and \(f_{i}(x)=\mathrm{e}^{-x}x^{l'_{i}+l_{i}+2}L_{n'_{i}}^{2l'_{i}+2}(x)L_{n_{i}}^{2l_{i}+2}(x)\) (i=1,2). The multiplier D LM from the formula (5.30) is

$$\begin{aligned} D_{LM} =&(-1)^{m+m'_1+m'_2}\sqrt {{\frac{(2l'_1+1)(2l'_2+1)(2l_1+1)(2l_2+1)}{(2L+1)^2}} } \\ &{}\times C^{L0}_{l'_1 0,l_1 0} C^{L0}_{l'_2 0,l_2 0}C^{L-M}_{l'_1-m'_1,l_1 m_1} C^{LM}_{l'_2-m'_2,l_2 m_2}, \end{aligned}$$
(5.32)

where \(C^{lm}_{l_{1}m_{1},l_{2}m_{2}}\)—Clebsch-Gordan coefficients.

Substitution x </> by x and y the integral (5.31) can be represented as

$$ R_L=\int_{ x>y}\int \mathrm{d}x\mathrm{d}yf_1(x)f_2(y)\frac{y^L}{x^{L+1}} + \int _{ x<y}\int \mathrm{d}x\mathrm{d}yf_1(x)\mathrm{d}yf_2(y) \frac{x^L}{y^{L+1}} , $$
(5.33)

where the integration over variables x,y is realized on the region [0,∞); integrals from the right part correspond to x>y and x<y cases, respectively. As the integration order in this relation is arbitrary, each of integrals from the right part can be taken in two variants [5357]. For the first integral there is the expression

$$ \int_0^{\infty} \mathrm{d}xf_1(x)\int_0^{x}\mathrm{d}yf_2(y)\frac{y^L}{x^{L+1}}=\int_0^{\infty} \mathrm{d}xf_2(x)\int_x^{\infty} \mathrm{d}yf_1(y)\frac{x^L}{y^{L+1}} . $$
(5.34)

The second integral from the right part of (5.33) can be obtained from (5.34) by substitution f 2 for f 1 (and vice versa). Using the expressions with the internal integration over the interval xy≤∞, the integrals from (5.33) can be modified as

$$ R_L=\int_0^{\infty} \mathrm{d}xf_2(x)\int_x^{\infty} \mathrm{d}yf_1(y)\frac {x^L}{y^{L+1}} + \int_0^{\infty} \mathrm{d}xf_1(x)\int_x^{\infty} \mathrm{d}yf_2(y)\frac {x^L}{y^{L+1}} . $$
(5.35)

The expansion of Laguerre polynomials from (5.35) over powers of variables x and y permits to present R L as

$$ R_L=\sum_{t=0}^{n_1+n'_1} \sum_{u=0}^{n_2+n'_2}W_t \bigl(n'_1,l'_1,n_1,l_1 \bigr) W_u\bigl(n'_2,l'_2,n_2,l_2 \bigr) [ H_{\alpha+t,\beta+u-\gamma}+H_{\beta+u,\alpha+t-\gamma} ] , $$
(5.36)

where \(\alpha=l'_{1}+l_{1}+L+2\), \(\beta=l'_{2}+l_{2}+L+2\), γ=2L+1 and H a,b —integral in the form

$$ H_{a,b}=\int_0^{\infty}x^a \mathrm{e}^{-x}\varGamma(b+1,x)dx=\frac{\varGamma (a+b+2)}{(a+1)2^{a+b+2}}{}_2F_1(1,a+b+2,a+2;1/2) . $$
(5.37)

By means the integral \(\int_{0}^{\infty}x^{a}\mathrm{e}^{-x}\gamma(b+1,x)\mathrm{d}x=\frac {\varGamma(a+b+2)}{(b+1)2^{a+b+2}}{}_{2}F_{1}(1,a+b+2,b+2;1/2)=H_{b,a}\) it can be shown that H a,b =Γ(a+1)Γ(b+1)−H b,a and H a,a =(Γ(a+1))2/2. Putting the recurrence relation Γ(b+1,x)=(b,x)+x bex into integral (5.37), one obtains

$$ H_{a,b}=bH_{a,b-1}+\frac{\varGamma(a+b+1)}{2^{a+b+1}} . $$
(5.38)

To evaluate the H a,b it is useful to introduce the new formula \(h_{a,b}=H_{a,b}\frac{2^{a+b+1}}{\varGamma(a+b+1)}\) (h 0,0=1), which allows to rewrite recursion (5.38) as \(h_{a,b}=\frac{2b}{a+b}h_{a,b-1}+1\).

The numerical tests demonstrated, that the evaluation of the radial integral by formulas (5.36)–(5.38) gives the accuracy up to 12th significant digits for the basis functions with \(\max(n'_{1} ,n_{1} ,n'_{2} ,n_{2}) \le7\), if the 64th bits representation of real numbers is used. The 128th bit representation allows to preserve the same accuracy level for the basis functions with \(\max(n'_{1} ,n_{1} ,n'_{2} ,n_{2}) \le10\). The check of the two-indexes recursion, which is analogous to the (5.22) [51], showed that this one provides a good precision only for integrals with \(\max (n'_{1},n_{1},n'_{2},n_{2}) \le13\) when 128th bit representation of real numbers is used. This is in accord with the remark in [51] about the possibility of using this recursion for integral calculation with a good accuracy \(\max(n'_{1},n_{1},n'_{2},n_{2}) \le14\). As it was not known beforehand if in constructing a wave function one can select polynomials with n≤13 only, the combined scheme was used. Calculations have been done with the formulas (5.36)–(5.38), if \(\max(n'_{1},n_{1},n'_{2},n_{2}) < 11\) and the quadrature integration being used in the opposite case. Using the replacement of u=x and v=yx, similar to [57], the integral (5.35) can be represented as

$$\begin{aligned} R_L =&\int_0^{\infty} \mathrm{d}uf_1(u)\int_0^{\infty} \mathrm{d}vf_2(u+v)\frac {u^L}{(u+v)^{L+1}} \\ &{}+ \int_0^{\infty} \mathrm{d}uf_2(u)\int _0^{\infty} \mathrm{d}vf_1(u+v)\frac{u^L}{(u+v)^{L+1}} . \end{aligned}$$
(5.39)

Thus, it is possible to use Gauss-Laguerre integration for calculation (5.39). Note, that the relation as \(\sum_{m=0}^{n}L_{m}^{\alpha}(x)L_{n-m}^{\beta}(y)=L_{n}^{\alpha+\beta +1}(x+y)\) [41] allows to factorize the two-dimensional integral completely.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Adamson, S.O., Kharlampidi, D.D., Dementiev, A.I. (2013). Application of the Uniformly Charged Sphere Stabilization for Calculating the Lowest 1 S Resonances of H . In: Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G. (eds) Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-01529-3_5

Download citation

Publish with us

Policies and ethics