Advertisement

Application of the Uniformly Charged Sphere Stabilization for Calculating the Lowest 1S Resonances of H

  • S. O. AdamsonEmail author
  • D. D. Kharlampidi
  • A. I. Dementiev
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)

Abstract

The uniformly charged sphere stabilization method has been used to calculate the lowest 1 S resonances of H . It was shown that this method is sensitive to the choice of basis set and parameters of the stabilization potential. The conclusion on the suitability of this method for calculating resonance energies and widths is based on the analysis of our computational results.

Keywords

Resonance Energy Resonance Parameter Stabilization Curve Slater Determinant Lower Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The study has been carried out with the financial support of the Russian Foundation for Basic Research, grant No. 12-03-00821.

References

  1. 1.
    Nicolaides CA (2010) Theory and state-specific methods for the analysis and computation of field-free and field-induced unstable states in atoms and molecules. In: Nicolaides CA, Brändas E (eds) Unstable states in the continuous spectra, Part I: analysis, concepts, methods, and results. Advances in quantum chemistry, vol 60. Elsevier, Amsterdam, pp 163–267, and references therein CrossRefGoogle Scholar
  2. 2.
    Moiseyev N (2011) Non-Hermitian quantum mechanics. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  3. 3.
    Nicolaides CA, Brändas E (eds) (2012) Unstable states in the continuous spectra, Part II: interpretation, theory and applications. Advances in quantum chemistry, vol 63. Elsevier, Amsterdam Google Scholar
  4. 4.
    Sabelli NH, Gislason EA (1984) SCF study of the lowest \(^{2}\varSigma_{u}^{+}\) resonance of \({H}_{2}^{-}\). J Chem Phys 81:4002–4007 CrossRefGoogle Scholar
  5. 5.
    DeRose E, Gislason EA, Sabelli NH (1985) A new method for computing properties of negative ion resonances with application to \(^{2}\varSigma_{u}^{+}\) states of \(H_{2}^{-}\). J Chem Phys 82:4577–4584 CrossRefGoogle Scholar
  6. 6.
    Chao JS-Y, Falcetta MF, Jordan KD (1990) Application of the stabilization method to the \({N}_{2}^{-} (1^{2}\varPi_{g} )\) and Mg (12 Π) temporary anion states. J Chem Phys 93:1125–1135 CrossRefGoogle Scholar
  7. 7.
    Izmaylov AF, Adamson SO, Zaitsevskii A (2004) Multipartitioning many-body perturbation theory calculations on temporary anions: applications to \({N}_{2}^{-}\) and CO . J Phys B, Atom Mol Phys 37:2321–2329 CrossRefGoogle Scholar
  8. 8.
    Izmaylov AF, Shchegoleva LN, Scuseria GE, Zaitsevskii A (2005) Ab initio study of temporary anions of benzene and fluorobenzenes using the multipartitioning many-body perturbation theory. Phys Chem Chem Phys 7:3933–3937 CrossRefGoogle Scholar
  9. 9.
    Adamson S et al. (2007) Multiscale multiphysics non-empirical approach to calculation of light emission properties of chemically active non-equilibrium plasma: application to Ga-I3 system. J Phys D, Appl Phys 40:3857–3881 CrossRefGoogle Scholar
  10. 10.
    Simons J (2008) Molecular anions. J Phys Chem A 112:6401–6511, and references therein CrossRefGoogle Scholar
  11. 11.
    Adamson SO, Deminskii MA et al. (2010) The role of dissociative electron attachment to metal halides in a low pressure glow discharge. Russ J Phys Chem B 4:1–7 CrossRefGoogle Scholar
  12. 12.
    Simons J (2011) Theoretical study of negative molecular ions. Annu Rev Phys Chem 62:107–128, and references therein CrossRefGoogle Scholar
  13. 13.
    Watson RE (1958) Analytic Hartree-Fock solutions for \({O}_{2}^{-}\). Phys Rev 111:1108–1110 CrossRefGoogle Scholar
  14. 14.
    Liebman JF, Yeager DL, Simons J (1977) A simple approach to predicting resonance levels. Chem Phys Lett 48:227–232 CrossRefGoogle Scholar
  15. 15.
    Hazi AU, Taylor HS (1970) Stabilization method of calculating resonance energies: model problem. Phys Rev A 1:1109–1120 CrossRefGoogle Scholar
  16. 16.
    Lefebvre R (1985) Box quantization and resonance determination: the multichannel case. J Phys Chem 89:4201–4206 CrossRefGoogle Scholar
  17. 17.
    Kukulin VI, Krasnopolsky VM, Horác̆ek J (1989) Resonances in atomic physics. In: Kukulin VI, Krasnopolsky VM, Horác̆ek J (eds) Theory of resonances. Principles and applications. Academia, Praha, pp 303–340, and references therein Google Scholar
  18. 18.
    Adamson S, Kharlampidi D, Dementiev A (2008) Stabilization of resonance states by an asymptotic Coulomb potential. J Chem Phys 128:024101, and references therein CrossRefGoogle Scholar
  19. 19.
    Kharlampidi DD, Dementiev AI, Adamson SO (2010) Using of stabilization by uniformly charged sphere for resonance states calculations. Russ J Phys Chem A 84:611–616 CrossRefGoogle Scholar
  20. 20.
    Adamson SO, Kharlampidi DD, Dement’ev AI (2011) Calculation of the parameters of resonance states using stabilization with non-Coulomb potentials. Russ J Phys Chem B 5:915–920 CrossRefGoogle Scholar
  21. 21.
    Jolicard G, Austin E (1986) Optical potential method of calculating resonance energies and widths. Chem Phys 103:295–302 CrossRefGoogle Scholar
  22. 22.
    Jolicard G, Leforestier C, Austin E (1988) Resonance states using the optical potential model. Study of Feshbach resonances and broad shape resonances. J Chem Phys 88:1026–1031 CrossRefGoogle Scholar
  23. 23.
    Callaway J (1978) The variational method in atomic scattering. Phys Rep 45:89–173, and references therein CrossRefGoogle Scholar
  24. 24.
    Ho YK (1981) Complex-coordinate calculations for doubly excited states of two-electron atoms. Phys Rev A 23:2137–2149 CrossRefGoogle Scholar
  25. 25.
    Pathak A, Kingston AE, Berrington KA (1988) Resonances in H associated with the n=2,3 and 4 hydrogenic thresholds. J Phys B, At Mol Opt Phys 21:2939–2951 CrossRefGoogle Scholar
  26. 26.
    Scholz T, Scott P, Burke PG (1988) Electron-hydrogen-atom scattering at intermediate energies. J Phys B, Atom Mol Phys 21:L139–LI45 CrossRefGoogle Scholar
  27. 27.
    Ho YK (1990) High-lying doubly excited states of H . J Phys B, At Mol Opt Phys 23:L71–L78 CrossRefGoogle Scholar
  28. 28.
    Botero J, Shertzer J (1992) Direct numerical solution of the Schrodinger equation for quantum scattering problems. Phys Rev A 46:R1155–R1158 CrossRefGoogle Scholar
  29. 29.
    Sadeghpour HR (1992) Resonant electron-hydrogen atom scattering using hyperspherical coordinate method. J Phys B, At Mol Opt Phys 25:L29–L35 CrossRefGoogle Scholar
  30. 30.
    Shertzer J, Botero J (1994) Finite-element analysis of electron-hydrogen scattering. Phys Rev A 49:3673–3679 CrossRefGoogle Scholar
  31. 31.
    Gien TT (1998) Observation of a triplet D-wave resonance below the n=2 H excitation threshold in electron-hydrogen scattering. J Phys B, At Mol Opt Phys 31:L629–L635 CrossRefGoogle Scholar
  32. 32.
    Gien TT (1998) Feshbach resonances below the n=2 H excitation threshold in electron—hydrogen scattering. J Phys B, At Mol Opt Phys 31:L1001–L1008 CrossRefGoogle Scholar
  33. 33.
    Bylicki M, Nicolaides C (2000) Theoretical resolution of the H resonance spectrum up to the n=4 threshold. II. States of 1 S and 1 D symmetries. Phys Rev A 61:052509 CrossRefGoogle Scholar
  34. 34.
    Zhang SB, Wang JG, Janev RK (2010) Electronhydrogen-atom elastic and inelastic scattering with screened Coulomb interaction around the n=2 excitation threshold. Phys Rev A 81:032707 CrossRefGoogle Scholar
  35. 35.
    Warner CD, King GC, Hammond P, Slevin J (1986) Resonance structure in elastic scattering of electrons from atomic hydrogen. J Phys B, At Mol Opt Phys 19:3297–3308 CrossRefGoogle Scholar
  36. 36.
    Burke PG, Taylor AJ (1966) Correlation in the elastic and inelastic S-wave scattering of electrons by H and He+. Proc Phys Soc Lond 88:549–562 CrossRefGoogle Scholar
  37. 37.
    Burke PG, Seaton MJ (1971) In: Alder B, Frenbach S, Rotenberg M (eds) Methods in computational physics. Atomic and molecular scattering, vol 10. Academic Press, New York. Chap. 1, and references therein Google Scholar
  38. 38.
    Harris FE, Michels HH (1971) In: Alder B, Frenbach S, Rotenberg M (eds) Methods in computational physics. Atomic and molecular scattering, vol 10. Academic Press, New York. Chap. 4, and references therein Google Scholar
  39. 39.
    Matese JJ, Oberoi RS (1971) Choosing pseudostates in the close-coupling formalism for electron-atomic-hydrogen system. Phys Rev A 4:569–579 CrossRefGoogle Scholar
  40. 40.
    Abramowitz M, Stegun I (eds) (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. NBS app math series, vol 55. Government Printing Office, Washington Google Scholar
  41. 41.
    Bateman H, Erdlyi A (1953) Higher transcendental functions, vols 1, 2. McGraw-Hill, New-York Google Scholar
  42. 42.
    O-ohata K, Taketa H, Huzinaga S (1966) Gaussian expansions of atomic orbitals. J Phys Soc Jpn 21:2306–2313 CrossRefGoogle Scholar
  43. 43.
    Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) Self-consistent molecular orbital methods. IV. Use of Gaussian expansions of Slater-type orbitals. Extension to second-row molecules. J Chem Phys 52:2769–2773 CrossRefGoogle Scholar
  44. 44.
    Widmark P-O, Persson BJ, Roos BO (1991) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor Chim Acta 79:419–432 CrossRefGoogle Scholar
  45. 45.
    Sadlej AJ (1992) Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. Theor Chim Acta 81:339–354 CrossRefGoogle Scholar
  46. 46.
    Wallis A, McElwain DLS, Pritchard HO (1969) The variation method and the algebraic eigenvalue problem. Int J Quant Chem 3:711–722 CrossRefGoogle Scholar
  47. 47.
    Moncrieff D, Wilson S (2005) Computational linear dependence in molecular electronic structure calculations using universal basis sets. Int J Quant Chem 101:363–371, and references therein CrossRefGoogle Scholar
  48. 48.
    Yoshida T (1995) Computation of Kummer functions U(a,b,x) for large argument x by using the τ-method. Inf Process Soc Jpn 36:2335–2342 Google Scholar
  49. 49.
    Temme NM (1983) The numerical computation of the confluent hypergeometric function U(a,b,z). Numer Math 41:63–82 CrossRefGoogle Scholar
  50. 50.
    Maier CH, Cederbaum LS (1980) A spherical-box approach to resonances. J Phys B, Atom Mol Phys 13:L119–L124 CrossRefGoogle Scholar
  51. 51.
    Gersbacher R, Broad JT (1990) Resonances in helium photoionisation. J Phys B 23:365–384 CrossRefGoogle Scholar
  52. 52.
    Guseinov II, Mamedov BA (2004) Evaluation of incomplete Gamma functions using downward recursion and analytical relations. J Math Chem 36:341–346 CrossRefGoogle Scholar
  53. 53.
    Eyring H, Walter J, Kimball GE (1944) Quantum chemistry. Wiley, New York Google Scholar
  54. 54.
    Holøien E, Midtdal J (1955) On a metastable energy state of the negative helium ion. Proc Phys Soc A 68:815–823 CrossRefGoogle Scholar
  55. 55.
    Condon EU, Shortley GH (1959) The theory of atomic spectra, 6th edn. Cambridge University Press, Cambridge Google Scholar
  56. 56.
    Schwartz C (1962) Importance of angular correlations between atomic electrons. Phys Rev 126:1015–1019 CrossRefGoogle Scholar
  57. 57.
    Goldman SP (1997) Accurate modified configuration interaction calculations for many electron systems made easy. Phys Rev Lett 78:2325–2328, and references therein CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • S. O. Adamson
    • 1
    • 3
    Email author
  • D. D. Kharlampidi
    • 2
  • A. I. Dementiev
    • 2
  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of ChemistryMoscow State Pedagogical UniversityMoscowRussia
  3. 3.MIPTMoscowRussia

Personalised recommendations