Advertisement

Some Biochemical Reflections on Information and Communication

  • Erkki J. BrändasEmail author
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)

Abstract

The biochemical aspects of communication have been investigated via an extended framework of original quantum-statistical concepts. The key idea develops from the notion of a so-called Spatio-Temporal Neumatic, STN, configuration, an open dissipative structure resting on the boundaries connecting micro-, meso- and macroscopic levels. In this category one finds de novo self-organization of molecular motion, enzymatic catalysis and the self-assembly of nano-structures all the way to biologically relevant processes like cell evolution, cellular neurobiology etc. The possibility to store and communicate coded messages in this enlarged organization is documented and recognized, unifying various proposals of theoretical understanding including in particular the law of Gödelian self-reference. It is demonstrated that intra-cell and inter-cell order leads to differentiation through a Poissonian modus operandi. The latter lacks intrinsic memory, but its statistical nature gives way to something non-intrinsic of teleonomic significance. Various consequences of this idea prompt a broadened notion of communication and information, generating encodable cell differentiation through cell quality value factors resonating through original communication channels accessible through Poisson statistics. It is shown that inter-cell communication is temporally dominated while intra-cell information is largely spatio-controlled. The nested (spatio-temporal) property of the “code of codes” extends from the genetic- through the socio-, ecological- and to the cosmological rank, while taking account of a more stringent and appraisable representation of the contemporary concept of a meme.

Keywords

Spike Train Quantum Discord Tuning Fork Generalize Master Equation Poissonian Modus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author thanks the organiser of QSCP XVII, Prof. Matti Hotokka, Åbo Akademi University, Turku for friendly cooperation, an excellent programme and outstanding organization as well as generous hospitality. The present research has, over the years, been supported by the Swedish Natural Science Research Council, the Swedish Foundation for Strategic Research, The European Commission and the Nobel Foundation.

References

  1. 1.
    Eigen M (1931) Molecular self-organization and the early stages of evolution. Q Rev Biophys 4(2):149 Google Scholar
  2. 2.
    Lehn J-M (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36(2):151 CrossRefGoogle Scholar
  3. 3.
    Karsenti E (2007) Self-organization processes in living matter. Interdiscip Sci Rev 32(2):163 CrossRefGoogle Scholar
  4. 4.
    Michl J, Vacek J (1997) A molecular “Tinkertoy” construction kit: computer simulation of molecular propellers. New J Chem 21(12):1259 Google Scholar
  5. 5.
    Ladik J (1999) Polymers as solids: a quantum mechanical treatment. Phys Rep 313(4):171 CrossRefGoogle Scholar
  6. 6.
    Ratner M, Ratner D (2003) Nanotechnology a gentle introduction to the next big idea. Prentice Hall, New York Google Scholar
  7. 7.
    Karlsson EB, Brändas EJ (1998) Modern studies of basic quantum concepts and phenomena. In: Karlsson EB, Brändas E (eds) Proceedings Nobel symposium, vol 104. World Scientific, Singapore Google Scholar
  8. 8.
    Mayr E (1974) Teleological and teleonomic: a new analysis. Boston Stud Philos Sci 14:91 CrossRefGoogle Scholar
  9. 9.
    Pittendrigh CS (1958) Adaptation, natural selection, and behavior. In: Roe A, Simpson GG (eds) Behavior and evolution. Yale University Press, New Haven Google Scholar
  10. 10.
    Deacon TW (2010) Incomplete nature. How mind emerged from matter. Norton, New York Google Scholar
  11. 11.
    Brändas EJ (2011) Int J Quant Chem 111:215 CrossRefGoogle Scholar
  12. 12.
    Brändas EJ (2011) Int J Quant Chem 111:1321 CrossRefGoogle Scholar
  13. 13.
    Brändas EJ (2012) In: Nicolaides CA, Brändas EJ (eds) Unstable states in the continuous spectra, part II: interpretation, theory and applications. Adv quant chem, vol 63. Elsevier, Amsterdam, p 33 Google Scholar
  14. 14.
    Belkic Dz, Belkic K (2013) In: Belkic Dz (ed) Theory of heavy ion collision physics in hadron therapy. Adv quant chem, vol 65. Elsevier, Amsterdam, p 407 Google Scholar
  15. 15.
    Obcemea CH, Brändas EJ (1983) Ann Phys 151:383 CrossRefGoogle Scholar
  16. 16.
    Yang CN (1962) Rev Mod Phys 34:694 CrossRefGoogle Scholar
  17. 17.
    Coleman AJ (1963) Rev Mod Phys 35:668 CrossRefGoogle Scholar
  18. 18.
    Dunne LJ, Brändas EJ, Murrell JN, Coropceanu V (1998) Solid State Commun 108:619–623 CrossRefGoogle Scholar
  19. 19.
    Brändas EJ, Chatzidimitriou-Dreismann CH (1991) Int J Quant Chem 40:649 CrossRefGoogle Scholar
  20. 20.
    Reid CE, Brändas EJ (1989) Lect Notes Phys 325:476 Google Scholar
  21. 21.
    Gödel KG (1931) Über Formal Unentscheidbare Sätze der Principia Matematica und Verwandter Systeme. Monatshefte Math Phys 38:173 Google Scholar
  22. 22.
    Prigogine I (1980) From being to becoming. Freeman, San Fransisco Google Scholar
  23. 23.
    Brändas EJ (2009) Int J Quant Chem 109:2860 CrossRefGoogle Scholar
  24. 24.
    Brändas EJ (1995) In: Lippert E, Macomber JD (eds) Dynamics during spectroscopic transitions. Springer, Berlin, p 148 CrossRefGoogle Scholar
  25. 25.
    Zubarev DN (1960) Usp Fiz Nauk 71:71 Google Scholar
  26. 26.
    Oliver H, Zurek WH (2001) Phys Rev Lett 88:017901 CrossRefGoogle Scholar
  27. 27.
    Henderson L, Vedral V (2001) J Phys A 34:6899 CrossRefGoogle Scholar
  28. 28.
    Antoniou I, Goldbeter A, Lefever R (eds) (2004) Complexity: microscopic and macroscopic aspects, workshop in honour of Ilya Prigogine on the occasion of his 85th birthday. Int J Quant Chem 98(2) Google Scholar
  29. 29.
    Nakajima S (1958) Prog Theor Phys 20:948 CrossRefGoogle Scholar
  30. 30.
    Zwanzig R (1960) J Chem Phys 33:1338 CrossRefGoogle Scholar
  31. 31.
    Balslev E, Combes JM (1971) Commun Math Phys 22:280 CrossRefGoogle Scholar
  32. 32.
    Prigogine I, George C, Henin F, Rosenfeld L (1973) Chem Scr 4:5 Google Scholar
  33. 33.
    Kumicák J, Brändas E (1993) Int J Quant Chem 46:391 CrossRefGoogle Scholar
  34. 34.
    Brändas EJ, Antoniou IE (1993) Int J Quant Chem 46:419 CrossRefGoogle Scholar
  35. 35.
    Gurdon JB (1962) J Embryol Exp Morphol 10:622 Google Scholar
  36. 36.
    Yamanaka TK (2006) Cell 126:663 CrossRefGoogle Scholar
  37. 37.
    Brändas EJ (2012) In: Hoggan P, Brändas EJ, Maruani J, Piecuch P, Delgado-Barrio G (eds) Advances in the theory of quantum systems in chemistry and physics, vol 21. Springer, Dordrecht, p 3 CrossRefGoogle Scholar
  38. 38.
    Löwdin P-O (1965) Adv Quantum Chem 2:213 CrossRefGoogle Scholar
  39. 39.
    Brändas EJ (2004) Int J Quant Chem 98:78 CrossRefGoogle Scholar
  40. 40.
    Szent-Györgyi A (1941) Nature 148:157 CrossRefGoogle Scholar
  41. 41.
    Szent-Györgyi A (1941) Science 93:609 CrossRefGoogle Scholar
  42. 42.
    Ladik J, Förner W (1994) The beginnings of cancer in the cell. An interdisciplinary approach. Springer, Berlin CrossRefGoogle Scholar
  43. 43.
    Ye Y-J, Ladik J (1994) Int J Quant Chem 52:491 CrossRefGoogle Scholar
  44. 44.
    Seybold PG (1976) Int J Quant Chem S3:39 Google Scholar
  45. 45.
    Kandel ER (2006) Search of memory the emergence of a new science of mind. Norton, New York Google Scholar
  46. 46.
    Arecchi FT (2003) Mind Matter 1:15 Google Scholar
  47. 47.
    Dawkins R (1976) The selfish gene. Oxford University Press, New York Google Scholar
  48. 48.
    Maruani J, Lefebvre R, Rantanen M (2003) In: Maruani J, Lefebvre R, Brändas E (eds) Advanced topics in theoretical chemical physics, vol 12. Kluwer Academic, Dordrecht, p 479 Google Scholar
  49. 49.
    Mayr E (2004) What makes biology unique? Cambridge University Press, New York CrossRefGoogle Scholar
  50. 50.
    Einstein E (1915) Zur Allgemeine Relativitätstheorie. Sitz Ber Der Preuss Akad der Wissenschaften, Berlin, p 778 Google Scholar
  51. 51.
    Brändas EJ (2013) Int J Quant Chem 113:173 CrossRefGoogle Scholar
  52. 52.
    Penrose R (1994) Shadows of the mind: a search for the missing science of consciousness. Oxford University Press, Oxford Google Scholar
  53. 53.
    Gödel K (1949) Rev Mod Phys 21:447 CrossRefGoogle Scholar
  54. 54.
    Brändas EJ (2012) In: Nishikawa K, Maruani J, Brändas EJ, Delgado-Barrio G, Piecuch P (eds) Quantum systems in chemistry and physics. Progress in methods and applications, vol 22. Springer, Berlin, p 3 Google Scholar
  55. 55.
    Deutsch D (2011) The beginning of infinity. Viking/Penguin, New York Google Scholar
  56. 56.
    Blackmore S (1999) The meme machine. Oxford University Press, Oxford Google Scholar
  57. 57.
    Semon R (1904) Die Mneme. Engelmann, Leipzig. Yale University Press, New Haven (2004) Google Scholar
  58. 58.
    Schacter DL (2001) Forgotten ideas, neglected pioneers: Richard Semon and the story of memory. Psychology Press, Oxford Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Ångström Laboratory, Theoretical Chemistry, Department of ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations