Advertisement

The Dirac Electron as a Massless Charge Spinning at Light Speed: Implications on Some Basic Physical Concepts

  • Jean MaruaniEmail author
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)

Abstract

The Dirac equation, which was derived by combining, in a consistent manner, the relativistic invariance condition with the quantum probability principle, has shown its fecundity by explaining the half-integer spin of fermions and predicting antimatter, the first resulting from a wave beat between a particle and its antiparticle. In the previous paper, it was conjectured that the spinning motion of the electron is that of a massless charge vibrating at light speed, and that this internal motion is responsible for the rest mass measured in external motions (inertia) and interactions (gravitation). In this paper, we develop implications of this concept on such basic properties as time, mass, electric charge, and magnetic moment.

Keywords

Black Hole Dirac Equation Rest Mass Spin Motion Orbital Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I wish to thank Erkki Brändas, Roland Lefebvre, John Macken, and Francis Sanchez for useful discussions and critical comments.

References

  1. 1.
    de Broglie L (1925) Recherches sur la théorie des quanta. Ann Phys 10(III):22–128. (Thesis, Sorbonne, Paris, 1924) Google Scholar
  2. 2.
    Dirac PAM (1928) Quantum theory of the electron. Proc R Soc Lond A 117:610–624 CrossRefGoogle Scholar
  3. 3.
    Dirac PAM (1931) Quantised singularities in the electromagnetic field. Proc R Soc Lond A 133:60–72 CrossRefGoogle Scholar
  4. 4.
    Dirac PAM (1933) Theory of electrons and positrons. Nobel lectures 320–325 Google Scholar
  5. 5.
    Dirac PAM (1930) The principles of quantum mechanics, 1st edn. Clarendon Press, Oxford. 4th edn (1958), Chaps 11–12 Google Scholar
  6. 6.
    de Broglie L (1934) L’électron magnétique: théorie de Dirac. Hermann, Paris. Chaps 9–22 Google Scholar
  7. 7.
    Feymann RP (1998) Quantum electrodynamics. Addison-Wesley, Reading Google Scholar
  8. 8.
    Cottingham WN, Greenwood DA (1998) Introduction to the standard model of particle physics. Cambridge University Press, Cambridge Google Scholar
  9. 9.
    Weinberg S (1995) The quantum theory of fields. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  10. 10.
    Compton AH (1923) A quantum theory of the scattering of x-rays by light elements. Phys Rev 21:483–502 CrossRefGoogle Scholar
  11. 11.
    Schrödinger E (1930) Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitzungsber Preuss Akad Wiss Berlin, Phys Math Kl 24:418–428 Google Scholar
  12. 12.
    Schrödinger E (1931) Zur Quantendynamik des Elecktrons. Sitzungsber Preuss Akad Wiss Berlin, Phys Math Kl 25:63–72 Google Scholar
  13. 13.
    Hönl H (1938) Ann Phys (V) 33:565 CrossRefGoogle Scholar
  14. 14.
    Hönl H, Papapetrou A (1939) Über die innere Bewegung des Elecktrons. Z Phys 112:512 CrossRefGoogle Scholar
  15. 15.
    Hönl H, Papapetrou A (1939) Über die innere Bewegung des Elecktrons. Z Phys 114:478 CrossRefGoogle Scholar
  16. 16.
    Hönl H, Papapetrou A (1940) Über die innere Bewegung des Elecktrons. Z Phys 116:153 CrossRefGoogle Scholar
  17. 17.
    Huang K (1952) On Zitterbewegung of the Dirac electron. Am J Phys 20:479–484 CrossRefGoogle Scholar
  18. 18.
    Barut AO, Bracken AJ (1981) Zitterbewegung and the internal geometry of the electron. Phys Rev D 23:2454–2463 CrossRefGoogle Scholar
  19. 19.
    Barut AO, Bracken AJ (1981) Zitterbewegung and the internal geometry of the electron. Phys Rev D 24:3333–3342 CrossRefGoogle Scholar
  20. 20.
    Barut AO, Zanghi N (1984) Classical model of the Dirac electron. Phys Rev Lett 52:2009–2012 CrossRefGoogle Scholar
  21. 21.
    Barut AO, Pavšič M (1987) Quantization of the Zitterbewegung in the Schrödinger picture. Class Quantum Gravity 4:L131–L136, and references therein CrossRefGoogle Scholar
  22. 22.
    Maruani J (2012) The Dirac electron … and the kinetic foundation of rest mass. In: Nishi-kawa K et al. (eds) Prog theor chem & phys B, vol 26. Springer, Berlin, pp 23–46 Google Scholar
  23. 23.
    Infeld L, Schield AE (1945) A new approach to kinematic cosmology. Phys Rev 68:250–272 CrossRefGoogle Scholar
  24. 24.
    Infeld L, Schield AE (1946) A new approach to kinematic cosmology. Phys Rev 70:410–425 CrossRefGoogle Scholar
  25. 25.
    Chapman TC, Leiter DJ (1976) On the generally covariant Dirac equation. Am J Phys 44:858–862 CrossRefGoogle Scholar
  26. 26.
    Arbab AI, Yassein FA (2012) A new formulation of quantum mechanics. J Mod Phys 3:163–169 CrossRefGoogle Scholar
  27. 27.
    Appelquist T, Chodos A, Freund PGO (eds) (1987) Modern Kaluza-Klein theories. Addison-Wesley, Reading, and references therein Google Scholar
  28. 28.
    Dahl JP (1977) The spinning electron. Det Kongelige Danske Vid. SM-FM 39(12):1–33 Google Scholar
  29. 29.
    Ohanian HC (1986) What is spin? Am J Phys 54:500–505 CrossRefGoogle Scholar
  30. 30.
    Rahmani Nejad A (2009) A new approach to the concept of electron spin. Private communication Google Scholar
  31. 31.
    Tiwari SC (2012) Gordon decomposition of the Dirac current. Private communication Google Scholar
  32. 32.
    Dirac PAM (1962) An extensible model of the electron. Proc R Soc Lond A 268:57–67 CrossRefGoogle Scholar
  33. 33.
    Carr BJ, Rees MJ (1979) The anthropic principle and the structure of the physical world. Nature 278:605–612 CrossRefGoogle Scholar
  34. 34.
    Barrow JD, Tipler FT (1986) The anthropic cosmological principle. Oxford University Press, London, and references therein Google Scholar
  35. 35.
    Sanchez FM, Kotov VA, Bizouard C (2011) Towards a synthesis of two cosmologies: the steady-state flickering universe. J Cosmol 17:7225–7237 Google Scholar
  36. 36.
    Sanchez FM, Kotov VA, Bizouard C (2012) Towards coherent cosmology. Galilean Cosmol 24(4):63–81, and private communication Google Scholar
  37. 37.
    Bousso R (2002) The holographic principle. Rev Mod Phys 74:825–874, and references therein CrossRefGoogle Scholar
  38. 38.
    Pavšič M (2001) The landscape of theoretical physics: a global view. Kluwer Academic, Dordrecht, pp 347–352. See also http://en.wikipedia.org/wiki/planck_units Google Scholar
  39. 39.
    Macken JA (2013) The Universe is only spacetime (http://onlyspacetime/home); wave-based insights into the relationship between forces. Private communication
  40. 40.
    Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun Pure Appl Math 10:151–157 CrossRefGoogle Scholar
  41. 41.
    Pack RT, Byers Brown W (1966) Cusp conditions for molecular wavefunctions. J Chem Phys 45:556–559. Cusp conditions involve averaging of the wavefunction over small spheres about the singularities, which is an indirect way of accounting for the finite size of the electron CrossRefGoogle Scholar
  42. 42.
    Kutzelnigg W (2003) Theory of electron correlation. In: Rychlewski J (ed) Explicitly correlated wave functions in chemistry and physics. Prog theor chem & phys A, vol 13. Kluwer Academic, Dordrecht, pp 3–90, and references therein CrossRefGoogle Scholar
  43. 43.
    Maruani J (1980) Magnetic resonance and related techniques. In: Becker P (ed) NATO ASI proceedings. Plenum, New York. It should be noted that the Darwin term is the contact correction to the interaction between two (pseudo-scalar) electric charges, while the Fermi term is the contact correction to the interaction between two (pseudo-vectorial) magnetic moments Google Scholar
  44. 44.
    Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs, and neutron stars: physics of compact objects. Wiley, New York, p 357 CrossRefGoogle Scholar
  45. 45.
    de Broglie L (1954) Théorie générale des particules à spin: méthode de fusion. Gauthier-Villars, Paris Google Scholar
  46. 46.
    de Broglie L (1961) Introduction à la nouvelle théorie des particules. Gauthier-Villars, Paris, Chap 3 Google Scholar
  47. 47.
    André J-M, Jonnard P (2011) Effective mass of photons in a one-dimensional photonic crystal. Phys Scr 84:035708, and references therein CrossRefGoogle Scholar
  48. 48.
    Haisch B, Rueda A, Puthoff HE (1994) Inertia as a zero-point field Lorentz force. Phys Rev A 49:678–694, and references therein CrossRefGoogle Scholar
  49. 49.
    Penrose R (1958) The apparent shape of a relativistically moving sphere. Research notes, Cambridge, pp 137–139 Google Scholar
  50. 50.
    Poincaré H (1905) Sur la dynamique de l’électron. C R Acad Sci (Paris) 140:1504–1508. In this prerelativistic paper, in addition to the first rigorous introduction of the homogeneous Lorentz group, Poincaré discusses the views of Lorentz and Langevin about the shape and size changes of the electron under fast motion, with implications for the electromagnetic and gravitational forces Google Scholar
  51. 51.
    Rowlett R (2012) How many? A dictionary of units of measurement. University of North Carolina at Chapel Hill, last update August 2012. http://www.unc.edu/~rowlett/units/
  52. 52.
    Costa de Beauregard O et al. (1968) Relativité et quanta: les grandes théories de la physique moderne. Masson, Paris Google Scholar
  53. 53.
    Karlsson EB, Brändas EJ (eds) (1998) Modern studies of basic quantum concepts and phenomena. Proc Nobel Symp 104, Physica Scripta T, vol 76, and references therein Google Scholar
  54. 54.
    Brändas EJ (2011) Gödelian structures and self-organization in biological systems. Int J Quant Chem 111:1321–1332. Also a chapter in this volume, and references therein CrossRefGoogle Scholar
  55. 55.
    Feynman R (1948) Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys 20:367–387 CrossRefGoogle Scholar
  56. 56.
    Schrödinger E (1967) What is life? Cambridge University Press, Cambridge, 180 pp. Combined publication with Mind and Matter. 1st edn in 1944 Google Scholar
  57. 57.
    Maruani J (2009) An illustrated overview of QSCP meetings. In: Piecuch P et al. (eds) Prog theor chem & phys B, vol 19. Springer, Berlin, pp 1–32 Google Scholar
  58. 58.
    Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York, and references therein Google Scholar
  59. 59.
    Maruani J, Lefebvre R, Rantanen M (2003) Science and music: from the music of the depths to the music of the spheres. In: Maruani J et al. (eds) Prog theor chem & phys B, vol 12. Kluwer Academic, Dordrecht, pp 479–514, and references therein Google Scholar
  60. 60.
    Quack M (2012) Molecular parity violation and chirality: the asymmetry of life and the symmetry violations in physics. In: Nishikawa K et al. (eds) Prog theor chem & phys B, vol 26. Springer, Berlin, pp 47–76, and references therein Google Scholar
  61. 61.
    Winklhofer M (2010) Magnetoreception. J R Soc Interface 7(S2):131–134. Also: http://en.wikipedia.org/wiki/magnetoreception, and references therein CrossRefGoogle Scholar
  62. 62.
    Crabtree V Electromagnetic radiation and the human body. humantruth.info/radiation.html
  63. 63.
    McRill D Effects of radio waves on living organisms. ehow.com/list_6376744…, and references therein
  64. 64.
    Ross MD (1984) Influence of gravity on the structure and function of animals. Adv Space Res 4:305–314. Also: http://en.wikipedia.org//wiki/gravitational_biology, and references therein CrossRefGoogle Scholar
  65. 65.
    Kaempffer FA (1967) The elements of physics: a new approach. Blaisdell, Toronto. Chaps 1, 11 & 15 Google Scholar
  66. 66.
    Kaempffer FA (1965) Concepts in quantum mechanics. Academic Press, New York. Chaps 13–15 & 26–28 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique-Matière et RayonnementCNRS & UPMCParisFrance

Personalised recommendations