Advertisement

Theoretical Analysis of Phase-Transition Temperature of Hydrogen-Bonded Dielectric Materials Induced by H/D Isotope Effect

  • Takayoshi Ishimoto
  • Masanori TachikawaEmail author
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)

Abstract

We theoretically analyzed the H/D isotope effect for phase transition temperature (T c ) and geometrical changes of hydrogen-bonded dielectric materials by using the multi-component molecular orbital method, which can take account the quantum effect of proton, deuteron, triton, and muon. Taking into account the quantum effect of proton/deuteron using the MC_MO method directly, the difference of T c , as well as, the geometry and electronic charge difference is universally elucidated. The origin of the isotope effect for hydrogen-bonded dielectric materials is from the difference of the proton/deuteron wave distributions under the anharmonicity of the potential.

Keywords

Potential Energy Surface Phase Transition Temperature Isotope Effect Cluster Model Quantum Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Busch G, Scherrer P (1935) Naturwissenschaften 23:737 CrossRefGoogle Scholar
  2. 2.
    Samara GA (1987) Ferroelectrics 71:161 CrossRefGoogle Scholar
  3. 3.
    Samara GA, Semmingsen D (1979) J Chem Phys 71:1401 CrossRefGoogle Scholar
  4. 4.
    Negran TJ, Glass AM (1978) Ferroelectrics 21:467 CrossRefGoogle Scholar
  5. 5.
    Gesi K (1980) J Phys Soc Jpn 48:886 CrossRefGoogle Scholar
  6. 6.
    Slater JC (1941) J Chem Phys 9:16 CrossRefGoogle Scholar
  7. 7.
    Blinc R (1960) J Phys Chem Solids 13:204 CrossRefGoogle Scholar
  8. 8.
    Blinc R, Zeks B (1972) Adv Phys 21:693 CrossRefGoogle Scholar
  9. 9.
    Tokunaga M, Matsubara T (1966) Prog Theor Phys 35:581 CrossRefGoogle Scholar
  10. 10.
    Tokunaga M, Matsubara T (1987) Ferroelectrics 72:175 CrossRefGoogle Scholar
  11. 11.
    Kaminov IP, Damon TC (1968) Phys Rev Lett 20:1195 Google Scholar
  12. 12.
    Peercy DS (1975) Rhys Rev B 12:2725 CrossRefGoogle Scholar
  13. 13.
    Samara GA (1981) Phys Rev Lett 27:103 CrossRefGoogle Scholar
  14. 14.
    Ichikawa M, Motida K (1987) Phys Rev B 36:874 CrossRefGoogle Scholar
  15. 15.
    Noda Y, Uchiyama S, Kahuku K, Kasatani H, Terauchi H (1990) J Phys Soc Jpn 59:2804 CrossRefGoogle Scholar
  16. 16.
    Noda Y, Kasatani H, Terauchi H, Gesi K (1990) J Phys Soc Jpn 59:3249 CrossRefGoogle Scholar
  17. 17.
    Noda Y, Kasatani H (1991) J Phys Soc Jpn 60:13 CrossRefGoogle Scholar
  18. 18.
    Noda Y, Kasatani H, Watanabe Y, Terauchi H (1990) J Phys Soc Jpn 59:2804 CrossRefGoogle Scholar
  19. 19.
    Tominaga Y (1994) J Korean Phys Soc 27:S16 Google Scholar
  20. 20.
    Koval S, Kohanoff J, Migoni RL, Tosatti E (2002) Phys Rev Lett 89:187602 CrossRefGoogle Scholar
  21. 21.
    Suwa Y, Yamauchi J, Kageshima H, Tsuneyuki S (2001) Mater Sci Eng B 79:31 CrossRefGoogle Scholar
  22. 22.
    Suwa Y, Yamauchi J, Kageshima H, Tsuneyuki S (2001) Mater Sci Eng B 79:98 CrossRefGoogle Scholar
  23. 23.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133 Google Scholar
  24. 24.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864 CrossRefGoogle Scholar
  25. 25.
    Becke AD (1992) J Chem Phys 96:2155 CrossRefGoogle Scholar
  26. 26.
    Tachikawa M (2002) Chem Phys Lett 360:494 CrossRefGoogle Scholar
  27. 27.
    Holyland JR (1964) J Chem Phys 40:3540 CrossRefGoogle Scholar
  28. 28.
    Schwartz ME, Schaad LJ (1967) J Chem Phys 46:4112 CrossRefGoogle Scholar
  29. 29.
    Helgaker T, Almlof J (1988) J Chem Phys 89:4889 CrossRefGoogle Scholar
  30. 30.
    Huber H (1979) Chem Phys Lett 62:95 CrossRefGoogle Scholar
  31. 31.
    Huber H (1980) Chem Phys Lett 70:353 CrossRefGoogle Scholar
  32. 32.
    Huber H (1980) Theor Chim Acta 55:117 CrossRefGoogle Scholar
  33. 33.
    Huber H (1981) J Mol Struct, Theochem 76:277 CrossRefGoogle Scholar
  34. 34.
    Hurley AC (1988) J Comput Chem 9:75 CrossRefGoogle Scholar
  35. 35.
    Frost AA (1977) In: Scharfer HF III (ed) Methods of electronic structure theory. Morden theoretical chemistry, vol 3. Plenum, New York, p 29 CrossRefGoogle Scholar
  36. 36.
    Mohallem JR, Dreizler RM, Trsic M (1986) Int J Quant Chem S20:45 CrossRefGoogle Scholar
  37. 37.
    Faegri K Jr, Almlof J (1986) J Comput Chem 7:396 CrossRefGoogle Scholar
  38. 38.
    Hashimoto K, Osamura Y (1989) Chem Phys Lett 164:353 CrossRefGoogle Scholar
  39. 39.
    Hashimoto K, Osamura Y (1991) J Chem Phys 95:1121 CrossRefGoogle Scholar
  40. 40.
    Hashimoto K, Osamura Y (1992) Can J Chem 70:547 CrossRefGoogle Scholar
  41. 41.
    Casimir HBG, Polder D (1948) Phys Rev 73:360 CrossRefGoogle Scholar
  42. 42.
    Milonni PW, Smith A (1996) Phys Rev A 53:3484 CrossRefGoogle Scholar
  43. 43.
    Milonni PW, Shih M-L (1992) Phys Rev A 45:4241 CrossRefGoogle Scholar
  44. 44.
    Thirunamachandran T (1983) Mol Phys 40:393 CrossRefGoogle Scholar
  45. 45.
    Jorgensen P, Simons J (1983) J Chem Phys 79:352 Google Scholar
  46. 46.
    Fletcher R (1980) Practical methods of optimization. Wiley, New York Google Scholar
  47. 47.
    Noda Y, Watanabe Y, Kasatani H, Terauchi H, Gesi K (1991) J Phys Soc Jpn 60:1972 CrossRefGoogle Scholar
  48. 48.
    Gesi K (1981) J Phys Soc Jpn 50:3185 CrossRefGoogle Scholar
  49. 49.
    Fukai M, Inaba A, Matsuo T, Suga H, Ichikawa M (1993) Solid State Commun 87:939 CrossRefGoogle Scholar
  50. 50.
    Endo M, Kaneko T, Osaka Y, Ichikawa M (1983) J Phys Soc Jpn 52:3829 CrossRefGoogle Scholar
  51. 51.
    Matsuo T, Kohno K, Ichikawa M (1994) J Korean Phys Soc 29:S432 Google Scholar
  52. 52.
    Tachikawa M, Mori K, Suzuki K, Iguchi K (1998) Int J Quant Chem 70:491 CrossRefGoogle Scholar
  53. 53.
    Tachikawa M, Mori K, Nakai H, Iguchi K (1998) Chem Phys Lett 290:437 CrossRefGoogle Scholar
  54. 54.
    Tachikawa M, Mori K, Osamura Y (1999) Mol Phys 96:1207 CrossRefGoogle Scholar
  55. 55.
    Pulay P (1969) Mol Phys 17:197 CrossRefGoogle Scholar
  56. 56.
    Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939 CrossRefGoogle Scholar
  57. 57.
    Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) J Am Chem Soc 104:2797 CrossRefGoogle Scholar
  58. 58.
    Pietro WJ, Fracl MM, Hehre WJ, Defrees DJ, Pople JA, Binkley JS (1982) J Am Chem Soc 104:5039 CrossRefGoogle Scholar
  59. 59.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Startmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Patersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Imamori I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nakayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Inc, Pittsburgh Google Scholar
  60. 60.
    Mulliken RS (1928) Phys Rev 32:186 CrossRefGoogle Scholar
  61. 61.
    Ubbelohde AR, Gallagher KJ (1955) Acta Crystallogr 8:71 CrossRefGoogle Scholar
  62. 62.
    Semmingsen D (1973) Acta Chem Scand 27:3961 CrossRefGoogle Scholar
  63. 63.
    Samuelsen J, Semmingsen D (1977) J Phys Chem Solids 38:1275 CrossRefGoogle Scholar
  64. 64.
    Ehrhardt K-D, Bauchenau U, Samuelsen EJ, Maier HD (1984) Phys Rev B 29:996 CrossRefGoogle Scholar
  65. 65.
    Semmingsen F, Feder J (1974) Solid State Commun 15:1369 CrossRefGoogle Scholar
  66. 66.
    Hollander FJ, Semmingsen D, Koetzle TF (1977) J Chem Phys 67:4825 CrossRefGoogle Scholar
  67. 67.
    Semmingsen D, Hollander FJ, Koetzle TF (1977) J Chem Phys 66:4405 CrossRefGoogle Scholar
  68. 68.
    Moritomo Y, Tokura Y, Takahashi H, Mori N (1991) Phys Rev Lett 67:2041 CrossRefGoogle Scholar
  69. 69.
    Dalal N, Klymachyov A, Bussmann-Holder A (1998) Phys Rev Lett 81:5924 CrossRefGoogle Scholar
  70. 70.
    Pulay P (1977) In: Schaefer HF (ed) Applications in electronic structure theory. Plenum, New York, p 153 CrossRefGoogle Scholar
  71. 71.
    Jahn HA, Teller E (1937) Proc R Soc A 161:220 CrossRefGoogle Scholar
  72. 72.
    Loiacono GM, Balascio JF, Osborne W (1974) Appl Phys Lett 24:455 CrossRefGoogle Scholar
  73. 73.
    Moritomo Y, Tokura Y, Nagaosa N, Suzuki T, Kumagai K (1993) Phys Rev Lett 71:2833 CrossRefGoogle Scholar
  74. 74.
    Moritomo Y, Katsufuji T, Tokura Y (1991) J Chem Phys 95:2244 CrossRefGoogle Scholar
  75. 75.
    Aratono Y, Matsumoto T, Takayanagi T, Kumada T, Komaguchi K, Miyazaki T (1998) J Phys Chem A 102:1501 CrossRefGoogle Scholar
  76. 76.
    Thomä NH, Meier TW, Evens PR, Leadlay PF (1998) Biochemistry 37:14386 CrossRefGoogle Scholar
  77. 77.
    Karsten WE, Hwang C-C, Cook PF (1999) Biochemistry 38:4398 CrossRefGoogle Scholar
  78. 78.
    Gordon MS, Binkley JS, Pople JA (1983) J Am Chem Soc 104:2797 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Frontier Energy Research Division, INAMORI Frontier Research CenterKyushu UniversityFukuokaJapan
  2. 2.Quantum Chemistry Division, Graduate School of ScienceYokohama-City UniversityYokohamaJapan

Personalised recommendations