Advertisement

Topological Mechanochemistry of Graphene

  • E. F. ShekaEmail author
  • V. A. Popova
  • N. A. Popova
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)

Abstract

In view of the formal topology, two common terms, namely, the connectivity and adjacency, determine the ‘quality’ of the C–C bonds of sp 2 nanocarbons. The feature is the most sensitive point of the inherent topology of the species so that such external action as the mechanical deformation should obviously change it and result in particular topological effects. The current chapter describes the effects caused by uniaxial tension of a graphene molecule in due course of the mechanochemical reaction. Basing on the molecular theory of graphene, the effects are attributed to both mechanical loading and chemical modification of the edge atoms of the molecule. The mechanical behavior is shown to be not only highly anisotropic with respect to the direction of the load application, but greatly dependent on the chemical modification of the molecule edge atoms thus revealing the topological character of the graphene deformation.

Keywords

Uniaxial Tension Mechanochemical Reaction Formal Topology Atomistic Approach Edge Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A financial support provided by the Ministry of Science and High Education of the Russian Federation grant 2.8223.2013 is highly acknowledged.

References

  1. 1.
    Cataldo F, Graovac A, Ori O (eds) (2011) The mathematics and topology of fullerenes. Springer Science+Business Media BV, Berlin Google Scholar
  2. 2.
    Merrifield RE, Simmons HE (1989) Topological methods in chemistry. Wiley, New York Google Scholar
  3. 3.
    Schmidt GMJ (1971) Photodimerization in the solid state. Pure Appl Chem 27:647–678 CrossRefGoogle Scholar
  4. 4.
    de Jong AWK (1923) Uber die Konstitution der Truxill – und Truxinsauren und uber die Entwiklung des Sonnenlichtes auf die Zimtsauren und Zimisaure – Salze. Chem Ber 56B:818–832 Google Scholar
  5. 5.
    Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlag Chemie, Weinheim. Bergstr Google Scholar
  6. 6.
    Enkelmann V (1984) Polydiacetilenes. Adv Polym Sci 63:91–121 CrossRefGoogle Scholar
  7. 7.
    Hasegawa M (1986) Topochemical photopolymerization of diolefin crystals. Pure Appl Chem 58:1179–1188 CrossRefGoogle Scholar
  8. 8.
    Boldyrev VV (1990) Topochemistry and topochemical reactions. React Solids 8:231–246 CrossRefGoogle Scholar
  9. 9.
    MacGillivray LR, Papaefstathiou GS (2004) Solid state reactivity. Topochemistry. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Dekker, New York, pp 1316–1319 Google Scholar
  10. 10.
    Guo F, Marti-Rujas J, Pan Z et al. (2008) Direct structural understanding of a topochemical solid state photopolymerization reaction. J Phys Chem C 112:19793–19796 CrossRefGoogle Scholar
  11. 11.
    Sheka EF, Shaymardanova LKh (2011) C60-based composites in view of topochemical reactions. J Mater Chem 21:17128 CrossRefGoogle Scholar
  12. 12.
    Sheka EF (2013) Topochemistry of spatially extended sp 2 nanocarbons: fullerenes, nanotubes, and graphene. In: Ashrafi AR, Cataldo F, Iranmanesh A et al. (eds) Topological modelling of nanostructures and extended systems. Carbon materials: chemistry and physics, vol 7. Springer, Dordrecht. doi: 10.1007/978-94-007-6413-2_5 CrossRefGoogle Scholar
  13. 13.
    Kudin K, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406 (10 p) CrossRefGoogle Scholar
  14. 14.
    Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120 (7 p) CrossRefGoogle Scholar
  15. 15.
    Hemmasizadeh A, Mahzoon M, Hadi E, Khadan R (2008) A method for developing the equivalent continuum model of a single layer graphene sheet. Thin Solid Films 516:7636–7640 CrossRefGoogle Scholar
  16. 16.
    Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys Rev B 80:205407 (8 p) CrossRefGoogle Scholar
  17. 17.
    Shokrieh MM, Rafiee R (2010) Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater Des 31:790–795 CrossRefGoogle Scholar
  18. 18.
    Li C, Chou T-W (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499 CrossRefGoogle Scholar
  19. 19.
    Sakhaee-Pour A (2009) Elastic properties of single-layered graphene sheet. Solid State Commun 149:91–95 CrossRefGoogle Scholar
  20. 20.
    Hashemnia K, Farid M, Vatankhah R (2009) Vibrational analysis of carbon nanotubes and graphene sheets using molecular structural mechanics approach. Comput Mater Sci 47:79–85 CrossRefGoogle Scholar
  21. 21.
    Tsai J-L, Tu J-F (2010) Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater Des 31:194–199 CrossRefGoogle Scholar
  22. 22.
    Guo Y, Guo W (2003) Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field. J Phys D, Appl Phys 36:805–811 CrossRefGoogle Scholar
  23. 23.
    Bu H, Chen Y, Zou M et al. (2009) Atomistic simulations of mechanical properties of graphene nanoribbons. Phys Lett A 373:3359–3362 CrossRefGoogle Scholar
  24. 24.
    Van Lier G, van Alsenoy C, van Doren V, Geerlings P (2000) Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 326:181–185 CrossRefGoogle Scholar
  25. 25.
    Gao Y, Hao P (2009) Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E 41:1561–1566 CrossRefGoogle Scholar
  26. 26.
    Topsakal M, Ciraci S (2010) Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys Rev B 81:024107 (6 p) CrossRefGoogle Scholar
  27. 27.
    Sheka EF, Chernozatonskii LA (2010) Broken spin symmetry approach to chemical susceptibility and magnetism of graphenium species. J Exp Theor Phys 110:121–132 CrossRefGoogle Scholar
  28. 28.
    Sheka EF (2012) Computational strategy for graphene: insight from odd electrons correlation. Int J Quant Chem 112:3076–3090 CrossRefGoogle Scholar
  29. 29.
    Sheka EF, Popova NA, Popova VA et al. (2011) A tricotage-like failure of nanographene. J Mol Mod 17:1121–1131 CrossRefGoogle Scholar
  30. 30.
    Sheka EF, Popova NA, Popova VA et al. (2011) Structure-sensitive mechanism of nanographene failure. J Exp Theor Phys 112:602–611 CrossRefGoogle Scholar
  31. 31.
    Popova NA, Sheka EF (2011) Mechanochemical reaction in graphane under uniaxial tension. J Phys Chem C 115:23745–23754 CrossRefGoogle Scholar
  32. 32.
    Popova VA, Popova NA, Sheka EF (2013) Effect of chemical modification of edge atoms of graphene sheets on their strength. arXiv:1301.0944 [cond-mat.mtrl-sci]
  33. 33.
    Tobolski A, Eyring H (1943) Mechanical properties of polymeric materials. J Chem Phys 11:125–134 CrossRefGoogle Scholar
  34. 34.
    Dewar MJS (1971) MO theory as a practical tool for studying chemical reactivity. Fortschr Chem Forsch 23:1–63 CrossRefGoogle Scholar
  35. 35.
    Nikitina EA, Khavryutchenko VD, Sheka EF et al. (1999) Deformation of poly(dimethylsiloxane) oligomers under uniaxial tension. Quantum-chemical view. J Phys Chem A 103:11355–11365 CrossRefGoogle Scholar
  36. 36.
    Khavryutchenko VD, Nikitina EA, Malkin AL et al. (1995) Mechanics of nanoobjects. Computational mechanochemistry. Phys Low-Dimens Struct 6:65–84 Google Scholar
  37. 37.
    Khavryutchenko VD, Khavryutchenko AV Jr (1993) DYQUAMECH dynamical-quantum modelling in mechanochemistry. Software for personal computers, Institute of Surface Chemistry. Nat Ac Sci of the Ukraine, Kiev Google Scholar
  38. 38.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method J Comput Chem 10:209–220 CrossRefGoogle Scholar
  39. 39.
    Jin C, Lan H, Peng L et al. (2009) Deriving carbon atomic chains from graphene. Phys Rev Lett 102:205501 CrossRefGoogle Scholar
  40. 40.
    Tashiro K, Kobayashi M, Tadacoro H (1992) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polym J 24:899–916 CrossRefGoogle Scholar
  41. 41.
    Sheka EF (2011) Fullerenes: nanochemistry, nanomagnetism, nanomedicine, nanophotonics. CRC Press/Taylor and Francis, Boca Raton CrossRefGoogle Scholar
  42. 42.
    Sheka EF, Popova NA (2011) When a covalent bond is broken? arXiv:1111.1530v1 [physics.chem-ph]

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations