Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 27))

Abstract

Odd electrons of benzenoid units and the correlation of these electrons having different spins are the main concepts of the molecular theory of graphene. In contrast to the theory of aromaticity, the molecular theory is based on the fact that odd electrons with different spins occupy different places in the space so that the configuration interaction becomes the central point of the theory. Consequently, a multi-determinant presentation of the wave function of the system of weakly interacting odd electrons is utterly mandatory on the way of the theory realization at the computational level. However, the efficacy of the available CI computational techniques is quite restricted in regard to large polyatomic systems, which does not allow performing extensive computational experiments. Facing the problem, computationists have addressed standard single-determinant ones albeit not often being aware of the correctness of the obtained results. The current chapter presents the molecular theory of graphene in terms of single-determinant computational schemes and discloses how reliable information about the electron-correlated system can be obtained by using either UHF or UDFT computational schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffmann R (2013) Small but strong lessons from chemistry for nanoscience. Angew Chem, Int Ed 52:93–103

    Article  CAS  Google Scholar 

  2. Hoffmann R (1971) Interaction of orbitals through space and through bonds. Acc Chem Res 4:1–9

    Article  CAS  Google Scholar 

  3. Hay PJ, Thibeault JC, Hoffmann R (1971) Orbital interactions in metal dimer complexes. J Am Chem Soc 97:4884–4899

    Article  Google Scholar 

  4. Sheka E (2003) Violation of covalent bonding in fullerenes. In: Sloot PMA, Abramson D, Bogdanov AV et al. (eds) Computational science—ICCS2003. Lecture notes in computer science. Springer, Heidelberg, pp 386–398

    Google Scholar 

  5. Sheka EF (2011) Fullerenes: nanochemistry, nanomagnetism, nanomedicine, nanophotonics. CRC Press/Taylor and Francis, Boca Raton

    Book  Google Scholar 

  6. Sheka EF (2003) Fullerenes as polyradicals. Internet electronic conference of molecular design, 2003, 23 November–6 December 2003. http://www.biochempress.com. November 28, paper 54

  7. Sheka EF (2004) Odd electrons and covalent bonding in fullerenes. Int J Quant Chem 100:375–386

    Article  CAS  Google Scholar 

  8. Sheka E (2009) Nanocarbons through computations: fullerenes, nanotubes, and graphene. In: The UNESCO-EOLSS encyclopedia nanoscience and nanotechnology. UNESCO, Moscow, pp 415–444

    Google Scholar 

  9. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  10. Davidson E (1998) How robust is present-day DFT? Int J Quant Chem 69:214–245

    Article  Google Scholar 

  11. Kaplan I (2007) Problems in DFT with the total spin and degenerate states. Int J Quant Chem 107:2595–2603

    Article  CAS  Google Scholar 

  12. Takatsuka K, Fueno T, Yamaguchi K (1978) Distribution of odd electrons in ground-state molecules. Theor Chim Acta 48:175–183

    Article  CAS  Google Scholar 

  13. Staroverov VN, Davidson ER (2000) Distribution of effectively unpaired electrons. Chem Phys Lett 330:161–168

    Article  CAS  Google Scholar 

  14. Benard MJ (1979) A study of Hartree–Fock instabilities in Cr2(O2CH)4 and Mo2(O2CH)4. J Chem Phys 71:2546–2556

    Article  CAS  Google Scholar 

  15. Lain L, Torre A, Alcoba DR et al. (2011) A study of the relationships between unpaired electron density, spin-density and cumulant matrices. Theor Chem Acc 128:405–410

    Article  CAS  Google Scholar 

  16. Sheka EF, Chernozatonskii LA (2007) Bond length effect on odd electrons behavior in single-walled carbon nanotubes. J Phys Chem A 111:10771–10780

    Article  CAS  Google Scholar 

  17. Sheka EF (2012) Computational strategy for graphene: insight from odd electrons correlation. Int J Quant Chem 112:3076–3090

    Article  CAS  Google Scholar 

  18. Zayets VA (1990) CLUSTER-Z1: quantum-chemical software for calculations in the s,p-basis. Institute of Surface Chemistry Nat Ac Sci of Ukraine, Kiev

    Google Scholar 

  19. Gao X, Zhou Z, Zhao Y et al. (2008) Comparative study of carbon and BN nanographenes: ground electronic states and energy gap engineering. J Phys Chem A 112:12677–12682

    Article  CAS  Google Scholar 

  20. Noodleman L (1981) Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 74:5737–5742

    Article  CAS  Google Scholar 

  21. Illas F, de Moreira IPR, de Graaf C, Barone V (2000) Magnetic coupling in biradicals, binuclear complexes and wide-gap insolators; a survey of ab initio function and density functional theory approaches. Theor Chem Acc 104:265–272

    Article  CAS  Google Scholar 

  22. Zvezdin AK, Matveev VM, Mukhin AA et al. (1985) Redkozemeljnyje iony v magnito-uporjadochennykh kristallakh (Rear Earth ions in magnetically ordered crystals). Nauka, Moskva

    Google Scholar 

  23. Van Fleck JH (1932) The theory of electric and magnetic susceptibilities. Oxford at the Clarendon Press, Oxford

    Google Scholar 

  24. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  25. Koshino M, Ando T (2007) Diamagnetism in disordered graphene. Phys Rev B 75:235333. (8 pp)

    Article  Google Scholar 

  26. Nair RR, Sepioni M, Tsai I-L et al. (2012) Spin-half paramagnetism in graphene induced by point defects. Nat Phys 8:199–202

    Article  CAS  Google Scholar 

  27. Sheka EF, Chernozatonskii LA (2010) Chemical reactivity and magnetism of graphene. Int J Quant Chem 110:1938–1946

    CAS  Google Scholar 

  28. Sheka EF, Chernozatonskii LA (2010) Broken spin symmetry approach to chemical susceptibility and magnetism of graphenium species. J Exp Theor Phys 110:121–132

    Article  CAS  Google Scholar 

  29. Shibayama Y, Sato H, Enoki T, Endo M (2000) Phys Rev Lett 84:1744

    Article  CAS  Google Scholar 

  30. Enoki T, Kobayashi Y (2005) J Mater Chem 15:3999

    Article  CAS  Google Scholar 

  31. Tada K, Haruyama J, Yang HX et al. (2011) Graphene magnet realized by hydrogenated graphene nanopore arrays. Appl Phys Lett 99:183111. (3 pp)

    Article  Google Scholar 

  32. Tada K, Haruyama J, Yang HX et al. (2011) Ferromagnetism in hydrogenated graphene nanopore arrays. Phys Rev Lett 107:217203. (5 pp)

    Article  CAS  Google Scholar 

  33. Sheka EF, Zayets VA, Ginzburg IYa (2006) Nanostructural magnetism of polymeric fullerene crystals. J Exp Theor Phys 103:728–739

    Article  CAS  Google Scholar 

  34. Boeker GF (1933) The diamagnetism of carbon tetrachloride, benzene and toluene at different temperatures. Phys Rev 43:756–760

    Article  CAS  Google Scholar 

  35. Seach MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal 1:2–11

    Article  Google Scholar 

  36. Komolov SA, Lazneva EF, Komolov AS (2003) Low-energy electron mean free path in thin films of copper phthalocyanine. Tech Phys Lett 29:974–976

    Article  CAS  Google Scholar 

  37. Takatsuka K, Fueno TJ (1978) The spin-optimized SCF general spin orbitals. II. The 22 S and 22 P states of the lithium atom. J Chem Phys 69:661–669

    Article  CAS  Google Scholar 

  38. Staroverov VN, Davidson ER (2000) Diradical character of the Cope rearrangement transition state. J Am Chem Soc 122:186–187

    Article  CAS  Google Scholar 

  39. Mayer I (1986) On bond orders and valences in the ab initio quantum chemical theory. Int J Quant Chem 29:73–84

    Article  CAS  Google Scholar 

  40. Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4907

    Article  CAS  Google Scholar 

  41. Zhogolev DA, Volkov VB (1976) Metody, algoritmy i programmy dlja kvantovo-khimicheskikh raschetov molekul (Methods, algorithms and programs for quantum-chemical calculations of molecules). Naukova Dumka, Kiev

    Google Scholar 

  42. Sheka EF, Zayets VA (2005) The radical nature of fullerene and its chemical activity. Russ J Phys Chem 79:2009–2014

    CAS  Google Scholar 

  43. Lain L, Torre A, Alcoba DR et al. (2009) A decomposition of the number of effectively unpaired electrons and its physical meaning. Chem Phys Lett 476:101–103

    Article  CAS  Google Scholar 

  44. Wang J, Becke AD, Smith VH Jr (1995) Eveluation of \(\langle \hat{S} \rangle^{2}\) in restricted, unrestricted Hartree-Fock, and density functional based theory. J Chem Phys 102:3477–3480

    Article  CAS  Google Scholar 

  45. Cohen AJ, Tozer DJ, Handy NC (2007) Evaluation of \(\langle \hat{S} \rangle^{2}\) in density functional theory. J Chem Phys 126:214104. (4 pp)

    Article  Google Scholar 

  46. Lobayan RM, Bochicchio RC, Torre A et al. (2011) Electronic structure and effectively unpaired electron density topology in closo-boranes: nonclassical three-center two-electron bonding. J Chem Theory Comput 7:979–987

    Article  CAS  Google Scholar 

  47. Kitagawa Y, Saito T, Ito M et al. (2007) Approximately spin-projected geometry optimization method and its application to di-chromium systems. Chem Phys Lett 442:445–450

    Article  CAS  Google Scholar 

  48. Kitagawa Y, Saito T, Nakanishi Y et al. (2009) Spin contamination error in optimized geometry of singlet carbene (1A1) by broken-symmetry method. J Phys Chem A 113:15041–15046

    Article  CAS  Google Scholar 

  49. Gross L, Mohn F, Moll N et al. (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  CAS  Google Scholar 

  50. ‘Olympic rings’ molecule olympicene in striking image. BBC News Science and Environment (2012-05-28)

    Google Scholar 

  51. Fujita M, Wakabayashi K, Nakada K et al. (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923

    Article  CAS  Google Scholar 

  52. Nakada K, Fujita M, Dresselhaus G et al. (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961

    Article  CAS  Google Scholar 

  53. Coleman J (2008) A new solution to graphene production. SPIE Newsroom. doi:10.1117/2.1200810.1336

    Google Scholar 

  54. The noise about graphene (2010) Science Centre of Barkley Lab

    Google Scholar 

  55. Sheka EF (2006) ‘Chemical portrait’ of fullerene molecule. J Struct Chem 47:600–607

    Article  CAS  Google Scholar 

  56. Sheka EF (2007) Chemical susceptibility of fullerenes in view of Hartree-Fock approach. Int J Quant Chem 107:2803–2816

    Article  CAS  Google Scholar 

  57. Sheka EF, Chernozatonskii LA (2010) Chemical reactivity and magnetism of graphene. Int J Quant Chem 110:1938–1946

    CAS  Google Scholar 

  58. Allouche A, Jelea A, Marinelli F et al. (2006) Hydrogenation and dehydrogenation of graphite (0001) surface: a density functional theory study. Phys Scr T 124:91–94

    Article  Google Scholar 

  59. Sheka EF (2010) Stepwise computational synthesis of fullerene C60 derivatives. Fluorinated fullerenes C60F2k. J Exp Theor Phys 111:395–412

    Google Scholar 

  60. Sheka EF, Popova NA (2012) Odd-electron molecular theory of the graphene hydrogenation. J Mol Model 18:3751–3768

    Article  CAS  Google Scholar 

  61. Elias DC, Nair RR, Mohiuddin TMG et al. (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610–613

    Article  CAS  Google Scholar 

  62. Sheka EF (2011) Computational synthesis of hydrogenated fullerenes from C60 to C60H60. J Mol Model 17:1973–1984

    Article  CAS  Google Scholar 

  63. Sheka EF, Popova NA (2011) When a covalent bond is broken? arXiv:1111.1530v1 [physics.chem-ph]

  64. Sheka EF, Popova NA (2012) Molecular theory of graphene oxide. arXiv:1212.6413 [cond-mat.mtrl-sci]

  65. Sheka EF, Popova NA (2012) Molecular theory of graphene oxide. Phys Chem Chem Phys 15:13304–13322

    Article  Google Scholar 

  66. Dreyer DS, Park S, Bielawski CW et al. (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  67. Zhu Y, Shanthi M, Weiwei C et al. (2010) Graphene and graphene oxide: synthesis. Properties, and Applications Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  68. Kuila T, Mishra AK, Khanra P et al. (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5:52–71

    Article  CAS  Google Scholar 

  69. Wang H, Hu IH (2011) Effect of oxygen content on structures of graphite oxides. Ind Eng Chem Res 50:6132–6137

    Article  CAS  Google Scholar 

  70. Fujii S, Enoki T (2010) Cutting of oxidized graphene into nanosized pieces. J Am Chem Soc 132:10034–10041

    Article  CAS  Google Scholar 

  71. Xu Z, Bando Y, Liu L et al. (2011) Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano 5:4401–4406

    Article  CAS  Google Scholar 

  72. Wang S, Wang R, Liu X et al. (2012) Optical spectroscopy investigation of the structural and electrical evolution of controllably oxidized graphene by a solution method. J Phys Chem C 116:10702–10707

    Article  CAS  Google Scholar 

  73. Mattevi C, Eda G, Agnoli S et al. (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583

    Article  CAS  Google Scholar 

  74. Wang L, Zhao J, Sun Y-Y et al. (2011) Characteristics of Raman spectra for graphene oxide from ab initio simulations. J Chem Phys 135:184503. (5 pp)

    Article  Google Scholar 

  75. Saxena S, Tyson TA, Negusse E (2010) Investigation of the local structure of graphene oxide. J Phys Chem Lett 1:3433–3437

    Article  CAS  Google Scholar 

  76. Ambrosi A, Chee SY, Khezri B et al. (2012) Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew Chem, Int Ed 51:500–503

    Article  CAS  Google Scholar 

  77. Lu N, Li Zh (2012) Graphene oxide: theoretical perspectives. In: Zeng J et al. (eds) Quantum simulations of materials and biological systems. Springer, Dordrecht, pp 69–84

    Chapter  Google Scholar 

  78. Levy N, Burke SA, Meaker KL et al. (2010) Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329:544–547

    Article  CAS  Google Scholar 

  79. Georgiou T, Britnell L, Blake P et al. (2011) Graphene bubbles with controllable curvature. Appl Phys Lett 99:093103. (3 pp)

    Article  Google Scholar 

  80. Koenig SP, Boddeti NG, Dunn ML et al. (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6:543–546

    Article  CAS  Google Scholar 

  81. Sheka EF, Popova NA, Popova VA et al. (2011) Structure-sensitive mechanism of nanographene failure. J Exp Theor Phys 112:602–611

    Article  CAS  Google Scholar 

  82. Sheka EF, Popova NA, Popova VA et al. (2011) A tricotage-like failure of nanographene. J Mol Model 17:1121–1131

    Article  CAS  Google Scholar 

  83. Popova NA, Sheka EF (2011) Mechanochemical reaction in graphane under uniaxial tension. J Phys Chem C 115:23745–23754

    Article  CAS  Google Scholar 

  84. Sheka EF, Shaymardanova LKh (2011) C60-based composites in view of topochemical reactions. J Mater Chem 21:17128–17146

    Article  CAS  Google Scholar 

  85. Sheka EF (2013) Topochemistry of spatially extended sp 2 nanocarbons: fullerenes, nanotubes, and graphene. In: Ashrafi AR, Cataldo F, Iranmanesh A et al. (eds) Topological modelling of nanostructures and extended systems. Carbon materials: chemistry and physics, vol 7. Springer, Dordrecht. doi:10.1007/978-94-007-6413-2_5

    Chapter  Google Scholar 

  86. Razbirin BS, Rozhkova NN, Sheka EF et al (2013) Fractals of graphene quantum dots in photoluminescence of shungite. arXiv:1308.2569v2 [cond-mat. mes-hall]

  87. Rozhkova NN, Sheka EF Shungite as loosely packed fractal nets of graphene-based quantum dots. arXiv:1308.0794v1 [cond-mat. mtrl-sci]

  88. Sheka EF (2009) May silicene exist? arXiv:0901.3663

  89. Sheka EF (2013) Why sp 2-like nanosilicons should not form: insight from quantum chemistry. Int J Quant Chem 113:612–618

    Article  CAS  Google Scholar 

  90. Tang S, Cao Z (2012) Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Phys Chem Chem Phys 14:16558–16565

    Article  CAS  Google Scholar 

  91. Hsu H-C, Shown I, Wei H-Y et al. (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author immensely appreciates fruitful discussions with I.L. Kaplan, E. Brandas, D. Tomanek. O. Ori, F. Cataldo, E. Molinary L.A. Chernozatonski who draw her attention onto different problems of the molecular theory of graphene. The author is deeply grateful to her colleagues N. Popova, V. Popova, L. Shaymardanova, B. Razbirin, D. Nelson, A. Starukhin, N. Rozhkova for support and valuable contribution into the study. A financial support provided by the Ministry of Science and High Education of the Russian Federation grant 2.8223.2013 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Sheka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Sheka, E.F. (2013). Molecular Theory of Graphene. In: Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G. (eds) Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-01529-3_15

Download citation

Publish with us

Policies and ethics