A Theoretical Study on Proton Conduction Mechanism in BaZrO3 Perovskite

  • Taku OnishiEmail author
  • Trygve Helgaker
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)


Hybrid Kohn-Sham calculations were performed to clarify the proton conduction mechanism in BaZrO3 perovskite, from the viewpoint of energetics and bonding. The calculated activation energy for proton conduction was much larger than the experimental one. It is because O–H covalent bonding formation affects the low-frequency real part in AC impedance spectra. The higher proton conductivity in wet condition is derived from “proton pumping effect”. We concluded that N-doping at oxygen site enhances the proton conductivity, due to the existence of much hydrogen atoms. We also investigated hydrogen defect around zirconium vacancy.


Proton Conduction Potential Energy Curve Oxygen Site Covalent Bonding Formation Total Energy Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by The Norwegian Research Council through the CoE Centre for Theoretical and Computational Chemistry (Grant No. 179568/V30).


  1. 1.
    Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ion 61:65–69 CrossRefGoogle Scholar
  2. 2.
    Kreuer KD (1999) Solid State Ion 125:285–302 CrossRefGoogle Scholar
  3. 3.
    Bohn HG, Schober T (2000) J Am Ceram Soc 83:768–792 CrossRefGoogle Scholar
  4. 4.
    Kreuer KD, Adams St, Münch W, Fuchs A, Klock U, Maier J (2001) Solid State Ion 145:295–306 CrossRefGoogle Scholar
  5. 5.
    Babilo P, Uda T, Haile SM (2007) J Mater Res 22:1322–1330 CrossRefGoogle Scholar
  6. 6.
    Duval SBC, Holtappels P, Vogt UF, Pomjakushina E, Conder K, Stimming U, Graule T (2007) Solid State Ion 178:1437 CrossRefGoogle Scholar
  7. 7.
    Kjølseth C, Fjeld H, Pryth Ø, Dahl PI, Estournès C, Haugsrud R, Norby T (2010) Solid State Ion 181:268–275 CrossRefGoogle Scholar
  8. 8.
    Münch W, Seifert G, Kreuer KD, Maier J (1997) Solid State Ion 97:39–44 CrossRefGoogle Scholar
  9. 9.
    Münch W, Kreuer KD, Seifert G, Maier J (2000) Solid State Ion 136–137:183–189 CrossRefGoogle Scholar
  10. 10.
    Shi C, Yoshino M, Morinaga M (2005) Solid State Ion 176:1091–1096 CrossRefGoogle Scholar
  11. 11.
    Björketun ME, Sundell PG, Wahnström G (2007) Phys Rev B 76:054307 CrossRefGoogle Scholar
  12. 12.
    Sundell PG, Björketun ME, Wahnström G (2007) Phys Rev B 76:094301 CrossRefGoogle Scholar
  13. 13.
    Onishi T, Helgaker T (2012) Int J Quant Chem 112:201–207 CrossRefGoogle Scholar
  14. 14.
    Onishi T, Helgaker T (2013) Int J Quant Chem 113:599–604 CrossRefGoogle Scholar
  15. 15.
    Onishi T (2009) Solid State Ion 180:592–597 CrossRefGoogle Scholar
  16. 16.
    Onishi T (2009) Int J Quant Chem 109:3659–3665 CrossRefGoogle Scholar
  17. 17.
    Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689–693 CrossRefGoogle Scholar
  18. 18.
    Bjørheim TS, Stølen S, Norby T (2010) Phys Chem Chem Phys 12:6817–6825 CrossRefGoogle Scholar
  19. 19.
    Bjørheim TS, Kuwabara A, Mohn CE, Norby T (2012) Int J Hydrog Energy 37:8110–8117 CrossRefGoogle Scholar
  20. 20.
    Becke AD (1993) J Chem Phys 98:1372–1377 CrossRefGoogle Scholar
  21. 21.
    Onishi T (2008) Int J Quant Chem 108:2856–2861 CrossRefGoogle Scholar
  22. 22.
    Onishi T, Takano Y, Kitagawa Y, Kawakami T, Yoshioka Y, Yamaguchi K (2001) Polyhedron 20:1177–1184 CrossRefGoogle Scholar
  23. 23.
    Tatewaki H, Huzinaga S (1979) J Chem Phys 71:4339–4348 CrossRefGoogle Scholar
  24. 24.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363 CrossRefGoogle Scholar
  25. 25.
    Varetto U 〈MOLEKEL 4.3.〉; Swiss National Supercomputing Centre. Manno, Switzerland Google Scholar
  26. 26.
    Bjørheim TS, Kuwabara A, Ahmed I, Haugsrud R, Stølen S, Norby T (2010) Solid State Ion 181:130–137 CrossRefGoogle Scholar
  27. 27.
    Onishi T (2012) Adv Quantum Chem 64:31–81 CrossRefGoogle Scholar
  28. 28.
    Onishi T (2010) Int J Quant Chem 110:2912–2917 CrossRefGoogle Scholar
  29. 29.
    Onishi T, Helgaker T (2012) In “A theoretical study on defect of hydrogen molecule for proton conductive SrTiO3 perovskite”. Presented at 14th international congress of quantum chemistry (ICQC) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Chemistry for Materials, Graduate School of EngineeringMie UniversityTsuJapan
  2. 2.The Center of Ultimate Technology on Nano-ElectronicsMie University (MIE-CUTE)TsuJapan
  3. 3.The Centre for Theoretical and Computational Chemistry (CTCC), Department of ChemistryUniversity of OsloOsloNorway

Personalised recommendations