Skip to main content

A Theoretical Study on Proton Conduction Mechanism in BaZrO3 Perovskite

  • Conference paper

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 27))

Abstract

Hybrid Kohn-Sham calculations were performed to clarify the proton conduction mechanism in BaZrO3 perovskite, from the viewpoint of energetics and bonding. The calculated activation energy for proton conduction was much larger than the experimental one. It is because O–H covalent bonding formation affects the low-frequency real part in AC impedance spectra. The higher proton conductivity in wet condition is derived from “proton pumping effect”. We concluded that N-doping at oxygen site enhances the proton conductivity, due to the existence of much hydrogen atoms. We also investigated hydrogen defect around zirconium vacancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ion 61:65–69

    Article  CAS  Google Scholar 

  2. Kreuer KD (1999) Solid State Ion 125:285–302

    Article  CAS  Google Scholar 

  3. Bohn HG, Schober T (2000) J Am Ceram Soc 83:768–792

    Article  CAS  Google Scholar 

  4. Kreuer KD, Adams St, Münch W, Fuchs A, Klock U, Maier J (2001) Solid State Ion 145:295–306

    Article  CAS  Google Scholar 

  5. Babilo P, Uda T, Haile SM (2007) J Mater Res 22:1322–1330

    Article  CAS  Google Scholar 

  6. Duval SBC, Holtappels P, Vogt UF, Pomjakushina E, Conder K, Stimming U, Graule T (2007) Solid State Ion 178:1437

    Article  CAS  Google Scholar 

  7. Kjølseth C, Fjeld H, Pryth Ø, Dahl PI, Estournès C, Haugsrud R, Norby T (2010) Solid State Ion 181:268–275

    Article  Google Scholar 

  8. Münch W, Seifert G, Kreuer KD, Maier J (1997) Solid State Ion 97:39–44

    Article  Google Scholar 

  9. Münch W, Kreuer KD, Seifert G, Maier J (2000) Solid State Ion 136–137:183–189

    Article  Google Scholar 

  10. Shi C, Yoshino M, Morinaga M (2005) Solid State Ion 176:1091–1096

    Article  CAS  Google Scholar 

  11. Björketun ME, Sundell PG, Wahnström G (2007) Phys Rev B 76:054307

    Article  Google Scholar 

  12. Sundell PG, Björketun ME, Wahnström G (2007) Phys Rev B 76:094301

    Article  Google Scholar 

  13. Onishi T, Helgaker T (2012) Int J Quant Chem 112:201–207

    Article  CAS  Google Scholar 

  14. Onishi T, Helgaker T (2013) Int J Quant Chem 113:599–604

    Article  CAS  Google Scholar 

  15. Onishi T (2009) Solid State Ion 180:592–597

    Article  CAS  Google Scholar 

  16. Onishi T (2009) Int J Quant Chem 109:3659–3665

    Article  CAS  Google Scholar 

  17. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689–693

    Article  CAS  Google Scholar 

  18. Bjørheim TS, Stølen S, Norby T (2010) Phys Chem Chem Phys 12:6817–6825

    Article  Google Scholar 

  19. Bjørheim TS, Kuwabara A, Mohn CE, Norby T (2012) Int J Hydrog Energy 37:8110–8117

    Article  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  21. Onishi T (2008) Int J Quant Chem 108:2856–2861

    Article  CAS  Google Scholar 

  22. Onishi T, Takano Y, Kitagawa Y, Kawakami T, Yoshioka Y, Yamaguchi K (2001) Polyhedron 20:1177–1184

    Article  CAS  Google Scholar 

  23. Tatewaki H, Huzinaga S (1979) J Chem Phys 71:4339–4348

    Article  CAS  Google Scholar 

  24. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  25. Varetto U 〈MOLEKEL 4.3.〉; Swiss National Supercomputing Centre. Manno, Switzerland

    Google Scholar 

  26. Bjørheim TS, Kuwabara A, Ahmed I, Haugsrud R, Stølen S, Norby T (2010) Solid State Ion 181:130–137

    Article  Google Scholar 

  27. Onishi T (2012) Adv Quantum Chem 64:31–81

    Article  CAS  Google Scholar 

  28. Onishi T (2010) Int J Quant Chem 110:2912–2917

    Article  CAS  Google Scholar 

  29. Onishi T, Helgaker T (2012) In “A theoretical study on defect of hydrogen molecule for proton conductive SrTiO3 perovskite”. Presented at 14th international congress of quantum chemistry (ICQC)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by The Norwegian Research Council through the CoE Centre for Theoretical and Computational Chemistry (Grant No. 179568/V30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Onishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Onishi, T., Helgaker, T. (2013). A Theoretical Study on Proton Conduction Mechanism in BaZrO3 Perovskite. In: Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G. (eds) Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-01529-3_14

Download citation

Publish with us

Policies and ethics