A Theoretical Study on a Visible-Light Photo-Catalytic Activity in Carbon-Doped SrTiO3 Perovskite

  • Taku OnishiEmail author
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)


Carbon-doping has been explored to enhance the visible-light photocatalytic activity in SrTiO3 perovskite. Here, we considered carbon anion (C2−)-doping at oxygen site, because no oxygen vacancy is then formed. From our density functional theory (DFT) calculations for carbon anion-doped cluster models, it was found that carbon anion-doping enhances the visible-light photocatalytic activity, realizing a stable crystal structure. Finally, we concluded that carbon anion-doped SrTiO3 is one of the best visible-light active photocatalysts.


Photocatalytic Activity Potential Energy Curve Visible Light Region Strong Covalent Bonding Hybrid Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DG (1976) J Am Chem Soc 98:2774–2779 CrossRefGoogle Scholar
  2. 2.
    Domen K, Naito S, Onishi T, Tamaru K, Soma M (1982) J Phys Chem 86:3657–3661 CrossRefGoogle Scholar
  3. 3.
    Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H (1986) J Phys Chem 90:292–295 CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Honda A (1972) Nature 238:37–38 CrossRefGoogle Scholar
  5. 5.
    Nozik AJ (1975) Nature 257:383–386 CrossRefGoogle Scholar
  6. 6.
    Capizzi M, Frova A (1970) Phys Rev Lett 25:1298–1302 CrossRefGoogle Scholar
  7. 7.
    Onishi T (2012) Adv Quantum Chem 64:31–81 CrossRefGoogle Scholar
  8. 8.
    Onishi T (2008) Int J Quant Chem 108:2856–2861 CrossRefGoogle Scholar
  9. 9.
    Onishi T (2010) Top Catal 53:566–570 CrossRefGoogle Scholar
  10. 10.
    Wang J, Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2004) Appl Catal B 52:11–21 CrossRefGoogle Scholar
  11. 11.
    Miyauchi M, Takashio M, Tobimatsu H (2004) Langmuir 20:232–236 CrossRefGoogle Scholar
  12. 12.
    Ohno T, Tsubota T, Nakamura Y, Sayama K (2005) Appl Catal A 288:74–79 CrossRefGoogle Scholar
  13. 13.
    Ohno T, Tsubota T, Nishijima K, Miyamoto Z (2004) Chem Lett 33:750–751 CrossRefGoogle Scholar
  14. 14.
    Khan SUM, Shahry MA, Ingler WB Jr (2002) Science 297:2243–2245 CrossRefGoogle Scholar
  15. 15.
    Irie H, Watanabe Y, Hashimoto K (2003) Chem Lett 32:772–773 CrossRefGoogle Scholar
  16. 16.
    Crabtree RH (2005) The organometallic chemistry of the transition metals. Wiley, New York CrossRefGoogle Scholar
  17. 17.
    Becke AD (1993) J Chem Phys 98:1372–1397 CrossRefGoogle Scholar
  18. 18.
    Tatewaki H, Huzinaga S (1979) J Chem Phys 71:4339–4348 CrossRefGoogle Scholar
  19. 19.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363 CrossRefGoogle Scholar
  20. 20.
    Varetto U 〈MOLEKEL 4. 3.〉; Swiss National Supercomputing Centre: Manno, Switzerland Google Scholar
  21. 21.
    Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Nature 430:758–761 CrossRefGoogle Scholar
  22. 22.
    Kasahara A, Nokumizu K, Hitoki G, Takata T, Kondo J, Hara M, Kobayashi H, Domen K (2002) J Phys Chem A 106:6750–6753 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Chemistry for Materials, Graduate School of EngineeringMie UniversityMieJapan
  2. 2.The Center of Ultimate Technology on Nano-ElectronicsMie University (MIE-CUTE)MieJapan

Personalised recommendations