Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 27))

  • 1303 Accesses

Abstract

Isomeric alternatives to usual metal-hydrides as hydrogen-storage materials are considered. Presented are results of ab initio calculations for Be n (n≤18) clusters with up to two endohedral H2 molecules which undergo in-cage dissociation. The systems structures and stabilities are discussed, including energy barriers for hydrogen exit from the cage. The origin of the observed metastability, allowing for a lower-temperature release of H2, is explored. Preservation of the cage integrity and hydrogen confinement is investigated when such core-shell units are merged into larger assemblies structurally resembling fragments of hydrogen-filled metal nanofoams, possible isomeric forms of metal-hydride solid. Different “nanofoam” isomers are composed of pairs or single H atoms suspended electrostatically inside the metal cage units (“nanobubbles”). Interesting features include simultaneous exit of two H atoms, etc. Structural extrapolations suggest potential hydrogen storage capacity up to ∼10 weight-%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graetz J (2009) Chem Soc Rev 38:73

    Article  CAS  Google Scholar 

  2. Wagemans RWP et al. (2005) J Am Chem Soc 127:16675

    Article  CAS  Google Scholar 

  3. Harder S et al. (2011) Angew Chem, Int Ed 50:4156

    Article  CAS  Google Scholar 

  4. Srinivasu K et al. (2012) RSC Adv 2:2914

    Article  CAS  Google Scholar 

  5. Bandaru S et al. (2012) Int J Quant Chem 112:695

    Article  CAS  Google Scholar 

  6. Wang L et al. (2009) J Comput Chem 30:2509

    Article  CAS  Google Scholar 

  7. Henry DJ, Yarovsky I (2009) J Phys Chem A 113:2565

    Article  CAS  Google Scholar 

  8. McNelles P, Naumkin FY (2009) Phys Chem Chem Phys 11:2858

    Article  CAS  Google Scholar 

  9. Allouche A (2008) Phys Rev B 78:085429

    Article  Google Scholar 

  10. Lingam CB et al. (2011) Comput Theor Chem 963:371

    Article  CAS  Google Scholar 

  11. Sun Y, Fournier R (2005) Comput Lett 1:1

    Article  Google Scholar 

  12. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  13. Valiev M et al. (2010) NWChem, version 6.x. Comput Phys Commun 181:1477

    Article  CAS  Google Scholar 

  14. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  15. Naumkin FY, Wales DJ (2012) Int J Quant Chem 112:3068

    Article  CAS  Google Scholar 

  16. Naumkin FY, Wales DJ (2011) J Phys Chem A 115:12105

    Article  CAS  Google Scholar 

  17. Naumkin FY, Wales DJ (2012) Chem Phys Lett 545:44

    Article  CAS  Google Scholar 

  18. Skorb EV et al. (2010) Nanoscale 2:722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the RSC and the NSERC of Canada for the financial support of this work via a travel grant to FN. The staff of the HPC facilities of the UOIT Faculty of Science and of the Sharcnet network of Ontario are acknowledged for their invaluable technical support. FN is grateful to the University of Cambridge Department of Chemistry for their hospitality during his sabbatical visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Y. Naumkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Naumkin, F.Y., Wales, D.J. (2013). Hydrogen in Light-Metal Cage Assemblies: Towards a Nanofoam Storage. In: Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G. (eds) Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-01529-3_12

Download citation

Publish with us

Policies and ethics