Advertisement

The Potential Energy Surface in Molecular Quantum Mechanics

  • Brian SutcliffeEmail author
  • R. Guy Woolley
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 27)

Abstract

The idea of a Potential Energy Surface (PES) forms the basis of almost all accounts of the mechanisms of chemical reactions, and much of theoretical molecular spectroscopy. It is assumed that, in principle, the PES can be calculated by means of clamped-nuclei electronic structure calculations based upon the Schrödinger Coulomb Hamiltonian. This article is devoted to a discussion of the origin of the idea, its development in the context of the Old Quantum Theory, and its present status in the quantum mechanics of molecules. It is argued that its present status must be regarded as uncertain.

Keywords

Quantum Theory Potential Energy Surface Diatomic Molecule Berry Phase Nuclear Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Löwdin P-O (1989) Pure Appl Chem 61:2065–2074 CrossRefGoogle Scholar
  2. 2.
    Thomson JJ (1899) Philos Mag 48:547–567 Google Scholar
  3. 3.
    Woolley RG, Sutcliffe BT (2003) In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol 1. Kluwer Academic, Dordrecht Google Scholar
  4. 4.
    Sutcliffe BT, Woolley RG (2012) J Chem Phys 137:22A544 CrossRefGoogle Scholar
  5. 5.
    Marcelin R (1914) Contribution à l’étude de la cinétique physico-chimique. Gauthier-Villars, Paris Google Scholar
  6. 6.
    Marcelin R (1915) Ann Phys 3:120–231 Google Scholar
  7. 7.
    Marcelin R (1914) C R Hebd Séances Acad Sci 158:116–118 Google Scholar
  8. 8.
    Marcelin R (1914) C R Hebd Séances Acad Sci 158:407–409 Google Scholar
  9. 9.
    Gibbs JW (1902) Elementary principles in statistical mechanics. C. Scribner, New York Google Scholar
  10. 10.
    Navarro L (1998) Arch Hist Exact Sci 53:147–180 CrossRefGoogle Scholar
  11. 11.
    Duhem P (1911) Traité d’énergétique, 2 vols. Gauthier-Villars, Paris Google Scholar
  12. 12.
    Pelzer H, Wigner EP (1932) Z Phys Chem Abt B 15:445–471 Google Scholar
  13. 13.
    Wigner EP (1938) Trans Faraday Soc 34:29–41 CrossRefGoogle Scholar
  14. 14.
    Laidler KJ, King MC (1983) J Phys Chem 87:2657–2664 CrossRefGoogle Scholar
  15. 15.
    Waalkens H, Schubert R, Wiggins S (2008) Nonlinearity 21:R1–R118 CrossRefGoogle Scholar
  16. 16.
    Earnshaw S (1842) Trans Camb Philos Soc 7:97–112 Google Scholar
  17. 17.
    Bohr N (1922) The structure of the atom. Nobel Lecture, December 11. Available online as http://www.nobelprize.org/nobel_prizes/physics/laureates/1922/Bohr-lecture.html
  18. 18.
    Bohr N (1913) Philos Mag 26:1–25 Google Scholar
  19. 19.
    Schwarzschild K (1916) Sitzber Preuss Akad Wiss 1:548–561 Google Scholar
  20. 20.
    Heurlinger T (1919) Z Phys 20:188–190 Google Scholar
  21. 21.
    Born M (1925) Vorlesungen über Atommechanik. Springer, Berlin. The mechanics of the atom. Translated by JW Fisher (1927). George Bell and Sons, London Google Scholar
  22. 22.
    Sommerfeld A (1919) Atombau und Spektrallinien. Verlag F Vieweg und Sohn, Braunschweig Google Scholar
  23. 23.
    Ehrenfest P (1916) Ann Phys 356:327–352 CrossRefGoogle Scholar
  24. 24.
    Bohr N (1918) Kgl Danske Vid Selskab 4:1–36 Google Scholar
  25. 25.
    Bohr N (1923) Z Phys 13:117–165 CrossRefGoogle Scholar
  26. 26.
    Berry MV (1984) J Phys A, Math Gen 17:1225–1233 CrossRefGoogle Scholar
  27. 27.
    Gutzwiller M (1998) Rev Mod Phys 70:589–639 CrossRefGoogle Scholar
  28. 28.
    Percival IC (1973) J Phys B, Atom Mol Phys 6:L229–L232 CrossRefGoogle Scholar
  29. 29.
    Thirring W (1987) In: Kilmister CW (ed) Schrödinger, centenary celebrations of a polymath. Cambridge University Press, Cambridge Google Scholar
  30. 30.
    Poincaré H (1899) Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris Google Scholar
  31. 31.
    Einstein A (1917) Verh Dtsch Phys Ges 19:82–92 Google Scholar
  32. 32.
    Pauli W (1922) Ann Phys 68:177–240 CrossRefGoogle Scholar
  33. 33.
    Nordheim L (1923) Z Phys 19:69–93 CrossRefGoogle Scholar
  34. 34.
    Kemble EC (1926) Molecular spectra of gases. Bull NRC 11(57):303–304 Google Scholar
  35. 35.
    Kragh H (2012) Neils Bohr and the quantum atom: the Bohr model of atomic structure, 1913–1925. Oxford University Press, Oxford, p 239 CrossRefGoogle Scholar
  36. 36.
    Born M, Heisenberg W (1924) Ann Phys 74:1–31 CrossRefGoogle Scholar
  37. 37.
    Eckart C (1935) Phys Rev 47:552–558 CrossRefGoogle Scholar
  38. 38.
    Born M, Oppenheimer JR (1927) Ann Phys 84:457–484 CrossRefGoogle Scholar
  39. 39.
    Heitler W, London F (1927) Z Phys 44:455–472 CrossRefGoogle Scholar
  40. 40.
    London F (1928) In: Quantentheorie und Chemie. Hirzel, Leipzig, p 59 Google Scholar
  41. 41.
    London F (1928) In: Probleme der modernen Physik. Hirzel, Leipzig, p 104 Google Scholar
  42. 42.
    Slater JC (1927) Proc Natl Acad Sci 13:423–430 CrossRefGoogle Scholar
  43. 43.
    Born M, Fock V (1928) Z Phys 51:165–180 CrossRefGoogle Scholar
  44. 44.
    Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford Google Scholar
  45. 45.
    Lathouwers L, van Leuven P (1982) Adv Chem Phys 49:115–189 CrossRefGoogle Scholar
  46. 46.
    An English language translation of the original paper can be found at www.ulb.ac.be/cpm/people/scientists/bsutclif/main.html
  47. 47.
    Sutcliffe BT (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding, part 1. Springer, Berlin, pp 1–28 Google Scholar
  48. 48.
    Pauling L, Wilson EB Jr. (1935) Introduction to quantum mechanics. McGraw-Hill, New York. See especially Chap X, p 262 Google Scholar
  49. 49.
    Born M (1951) Nachr. Akad. Wiss. Göttingen. Math-Phys. Klasse IIa. Math Phys Chem Abt, S Art Nr 6:1–3 Google Scholar
  50. 50.
    O’Malley TF (1971) Adv At Mol Phys 7:223–249 CrossRefGoogle Scholar
  51. 51.
    Hall GG (1987) Int J Quant Chem XXXI:383–391 CrossRefGoogle Scholar
  52. 52.
    Loss M, Miyao T, Spohn H (2007) J Funct Anal 243:353–393 CrossRefGoogle Scholar
  53. 53.
    Reed M, Simon B (1978) Analysis of operators. Methods of modern mathematical physics, vol IV. Academic Press, New York Google Scholar
  54. 54.
    Kato T (1951) Trans Am Math Soc 70:195–218 Google Scholar
  55. 55.
    Frolov AM (1999) Phys Rev A 59:4270–4280 CrossRefGoogle Scholar
  56. 56.
    Messiah A (1961) Quantum mechanics. North-Holland, Amsterdam Google Scholar
  57. 57.
    Bastiaan JB, Bowman JM (2009) Int Rev Phys Chem 28:577–606 CrossRefGoogle Scholar
  58. 58.
    Broeckhove J, Lathouwers L, van Leuven P (1991) J Math Chem 6:207–241 CrossRefGoogle Scholar
  59. 59.
    Mead CA (1992) Rev Mod Phys 64:51–85 CrossRefGoogle Scholar
  60. 60.
    Faure F, Zhilinskii B (2002) Phys Lett A 302:242–252 CrossRefGoogle Scholar
  61. 61.
    Combes J-M (1975) In: International symposium on mathematical physics, Kyoto University, Kyoto. Lecture notes in physics, vol 39, pp 467–471 Google Scholar
  62. 62.
    Combes J-M (1977) Acta Phys Austriaca Suppl XVII:139–159 Google Scholar
  63. 63.
    Combes J-M, Seiler R (1980) Quantum dynamics of molecules. In: Woolley RG (ed) NATO ASI B57. Plenum, New York Google Scholar
  64. 64.
    Combes J-M, Duclos P, Seiler R (1981) In: Velo G, Wightman A (eds) Rigorous atomic and molecular physics. Plenum, New York Google Scholar
  65. 65.
    Löwdin P-O (1966) Perturbation theory and its application in quantum mechanics. In: Wilcox CH (ed) Proceedings of Madison symposium. Wiley, New York Google Scholar
  66. 66.
    Zhislin G (1960) Tr Mosc Mat Obsc 9:81–128 Google Scholar
  67. 67.
    van Winter C (1964) Kgl Danske Vid Selskab 1:1–60 Google Scholar
  68. 68.
    Hunziker W (1966) Helv Phys Acta 39:451–462 Google Scholar
  69. 69.
    Hagedorn GA, Joye A (2007) In: Gesztezy F, Deift P, Galvez C, Perry P, Schlag GW (eds) Spectral theory and mathematical physics. A festschrift in honor of Barry Simon’s 60th birthday. Oxford University Press, London, p 203 CrossRefGoogle Scholar
  70. 70.
    Klein M, Martinez A, Seiler R, Wang XP (1992) Commun Math Phys 143:607–639 CrossRefGoogle Scholar
  71. 71.
    Feffermann CL (1983) Bull Am Math Soc 9:129–206 CrossRefGoogle Scholar
  72. 72.
    Hagedorn GA, Joye A (1999) Rev Math Phys 11:41–101 CrossRefGoogle Scholar
  73. 73.
    Primas H (1983) Chemistry, quantum mechanics and reductionism, 2nd edn. Springer, Berlin CrossRefGoogle Scholar
  74. 74.
    Woolley RG (1980) Isr J Chem 19:30–46 Google Scholar
  75. 75.
    Woolley RG (1982) Struct Bond (Springer) 52:1–35 CrossRefGoogle Scholar
  76. 76.
    Anderson PW (1984) Basic notions of condensed matter physics. Benjamin-Cummings, Redwood City Google Scholar
  77. 77.
    Lorentz HA (1909) The theory of electrons and its applications to the phenomena of light and radiant heat. Teubner, Leipzig Google Scholar
  78. 78.
    Lieb EH, Loss M (2003) Adv Theor Math Phys 7:667–710 CrossRefGoogle Scholar
  79. 79.
    Lieb EH, Loss M (2005) Commun Math Phys 258:675–695 CrossRefGoogle Scholar
  80. 80.
    Hasler D, Herbst I (2008) Commun Math Phys 279:769–787 CrossRefGoogle Scholar
  81. 81.
    Loss M, Miyao T, Spohn H (2009) Lett Math Phys 89:21–31 CrossRefGoogle Scholar
  82. 82.
    Lieb EH, Seiringer R (2010) The stability of matter in quantum mechanics. Cambridge University Press, Cambridge Google Scholar
  83. 83.
    Hunter G (1975) Int J Quant Chem 9:237–242 CrossRefGoogle Scholar
  84. 84.
    Abedi A, Matra NT, Gross EKU (2010) Phys Rev Lett 105:123002 CrossRefGoogle Scholar
  85. 85.
    Kutzelnigg W (2007) Mol Phys 105:2627–2647 CrossRefGoogle Scholar
  86. 86.
    Hunter G (1981) Int J Quant Chem 19:755–761 CrossRefGoogle Scholar
  87. 87.
    Czub J, Wolniewicz L (1978) Mol Phys 36:1301–1305 CrossRefGoogle Scholar
  88. 88.
    Wilson EB Jr. (1979) Int J Quantum Chem, Symp 13:5–14 Google Scholar
  89. 89.
    Cassam-Chenai P (2006) Chem Phys Lett 420:354–357 CrossRefGoogle Scholar
  90. 90.
    Pachuki K, Komasa J (2009) J Chem Phys 130:164113 CrossRefGoogle Scholar
  91. 91.
    Henderson JR, Tennyson J, Sutcliffe BT (1993) J Chem Phys 98:7191–7203 CrossRefGoogle Scholar
  92. 92.
    Miller S, Tennyson J (1988) Chem Phys Lett 145:117–120 CrossRefGoogle Scholar
  93. 93.
    Sutcliffe BT, Woolley RG (2005) Phys Chem Chem Phys 7:3664–3676 CrossRefGoogle Scholar
  94. 94.
    Dixmier J (1981) Von Neumann algebras. Elsevier/North-Holland, Amsterdam Google Scholar
  95. 95.
    Ballentine LE (1990) Quantum mechanics. Prentice-Hall, Englewood Cliffs Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Service de Chimie Quantique et PhotophysiqueUniversité Libre de BruxellesBruxellesBelgium
  2. 2.School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations