Modelling of Disaster Spreading Dynamics

  • Igor StankovićEmail author
  • Milan Žeželj
  • Jelena Smiljanić
  • Aleksandar Belić
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)


Natural hazards are significant problem that every year cause important loses. We report on both theoretical models and simulations aimed at better understanding of disaster spreading in various networks. The structure of the networks in this work is obtained either through neighbor analysis in real space or using models which reproduce generic features of real networks (i.e., power, telecommunication, or road networks). Our investigations are focused on the understanding of interaction between network structure and disaster spreading mechanism. The probability that fire will propagate through fire protection strip is investigated and a model is introduced based on finite-size considerations in percolation theory. Also, the uncertainty in prediction of fire propagation rate due to the local inhomogeneities of the vegetation cover is investigated. Finally, uncertainty in cascade failures of network infrastructure is analyzed for a model where edges have limited capacity. The importance of the results for disaster prevention and control is discussed as well.


Random Network Percolation Theory Vegetal Phase Giant Component Tolerance Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Contreras, M.A., Parsons, R.A., Chung, W.: Forest Ecol. Manage. 264, 134 (2012)Google Scholar
  2. 2.
    Motter, A.E., Lai, Y.-C.: Phys. Rev. E 66, 065102 (2002)Google Scholar
  3. 3.
    Smiljanic, J., Stankovic, I.: Physica A, doi:10.1016/j.physa.2013.01.033Google Scholar
  4. 4.
    Newman, E.J., Forrest, S., Balthrop, J.: Phys. Rev. E 66, 035101 (2002)Google Scholar
  5. 5.
    Kalapala, V., Sanwalani, V., Clauset, A., Moore, C.: Phys. Rev. E 73, 026130 (2006)Google Scholar
  6. 6.
    Buzna, L., Peters, K., Ammoser, H., Kühnert, C., Helbing, D.: Phys. Rev. E 75, 056107 (2007)Google Scholar
  7. 7.
    Morandini, F., Silvani, X., Rossi, L., Santoni, P.-A., Simeoni, A., Balbi, J.-H., Rossi, J.L., Marcelli, T.: Fire Safety J. 41, 229 (2006)Google Scholar
  8. 8.
    Bak, P., Tang, C., Wiesenfeld, K.: Phys. Rev. A 38, 364 (1988)Google Scholar
  9. 9.
    Clar, S., Drossel, B., Schwabl, F.: J. Phys. Condens. Matter 8, 6803 (1996)Google Scholar
  10. 10.
    Zinck, R.D., Grimm, V.: Am. Nat. 174, 170 (2009)Google Scholar
  11. 11.
    Bollobás, B.: Random Graphs. Academic, London (1985)Google Scholar
  12. 12.
    Barabási, A.-L., Albert, R.: Science 286, 509 (1999)Google Scholar
  13. 13.
    Zezelj, M., Stankovic, I., Belic, A.: Phys. Rev. E 85, 021101 (2012)Google Scholar
  14. 14.
    Linn, R.R., Winterkamp, J.L., Weise, D.R., Edminster, C.: Int. J. Wild. Fire 19, 179 (2010)Google Scholar
  15. 15.
    Albert, R., Albert, I., Nakarado, G.L.: Phys. Rev. E 69, 025103 (2004)Google Scholar
  16. 16.
    Crucciti, P., Latora, V., Marchiori, M.: Phys. Rev. E 69, 045104 (2004)Google Scholar
  17. 17.
    Motter, A.E.: Phys. Rev. Lett. 93, 098701 (2004)Google Scholar
  18. 18.
    Schäfer, M., Scholz, J., Greiner, M.: Phys. Rev. Lett. 96, 108701 (2006)Google Scholar
  19. 19.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Nature 464, 08932 (2010)Google Scholar
  20. 20.
    Parshani, R., Buldyrev, S.V., Havlin, S.: PNAS 108, 1007 (2011)Google Scholar
  21. 21.
    Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Phys. Rev. E 100, 218701 (2008)Google Scholar
  22. 22.
    Newman, M.E.J., Ziff, R.M.: Phys. Rev. E 64, 016706 (2001)Google Scholar
  23. 23.
    Stanković, I.E., Kröger, M., Hess, S.: Comp. Physics Comm. 145, 371 (2002)Google Scholar
  24. 24.
    Balaž, A., Prnjat, O., Vudragović, D., Slavnić, V., Liabotis, I., Atanassov, E., Jakimovski, B., Savić, M.: J. Grid. Comput. 9, 135 (2011)Google Scholar
  25. 25.
    Li, J., Zhang, S.-L.: Phys. Rev. E 80, 040104 (2009)Google Scholar
  26. 26.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd revised edn. Taylor and Francis, London (2003)Google Scholar
  27. 27.
    Ziff, R.M., Newman, M.E.J.: Phys. Rev. E 66, 016129 (2002)Google Scholar
  28. 28.
    Margerit, J., Séro-Guillaume, O.: Int. J. Heat Mass Transf. 45, 1723 (2002)Google Scholar
  29. 29.
    Kuittu, M.-P., Haataja, M., Provatas, N., Ala-Nissila, T.: Phys. Rev. E 58, 1514 (1998)Google Scholar
  30. 30.
    Méndez, V., Llebot, J.E.: Phys. Rev. E 56, 6557 (1997)Google Scholar
  31. 31.
    Hovi, J.-P., Aharony, A.: Phys. Rev. E 53, 235 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Igor Stanković
    • 1
    Email author
  • Milan Žeželj
    • 1
  • Jelena Smiljanić
    • 1
  • Aleksandar Belić
    • 1
  1. 1.Scientific Computing Laboratory, Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia

Personalised recommendations