Advertisement

Density Waves in Dipolar Bose-Einstein Condensates by Means of Symbolic Computations

  • Alexandru I. Nicolin
  • Ionel Rata
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)

Abstract

We investigate by means of symbolic computations the emergence of density waves in cigar-shaped dipolar Bose-Einstein condensates and derive a series of approximate dispersion relations which exhibit the roton-maxon structure.

Keywords

Density Wave Trial Wave Function Faraday Wave Textbook Material Approximate Analytical Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  2. 2.
    Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R. (eds.): Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Springer, New York (2008)zbMATHGoogle Scholar
  3. 3.
    Vidanovic, I., Balaz, A., Al-Jibbouri, H., Pelster, A.: Nonlinear Bose-Einstein-condensate dynamics induced by a harmonic modulation of the s-wave scattering length. Phys. Rev. A 84, 013618 (2011)Google Scholar
  4. 4.
    Balaz, A., Nicolin, A.I.: Faraday waves in binary nonmiscible Bose-Einstein condensates. Phys. Rev. A 85, 023613 (2012)Google Scholar
  5. 5.
    Vudragovic, D., Vidanovic, I., Balaz, A., Muruganandam, P., Adhikari, S.K.: C programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Comp. Phys. Comm. 183, 2021 (2012)CrossRefGoogle Scholar
  6. 6.
    Vidanovic, I., Bogojevic, A., Belic, A.: Properties of quantum systems via diagonalization of transition amplitudes. I. Discretization effects. Phys. Rev. E 80, 066705 (2009)Google Scholar
  7. 7.
    Vidanovic, I., Bogojevic, A., Balaz, A., Belic, A.: Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation. Phys. Rev. E 80, 066706 (2009)Google Scholar
  8. 8.
    Balaz, A., Vidanovic, I., Bogojevic, A., Belic, A., Pelster, A.: Ultra-fast converging path-integral approach for rotating ideal Bose-Einstein condensates. Phys. Lett. A 374, 1539 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Balaz, A., Vidanovic, I., Bogojevic, A., Belic, A., Pelster, A.: Fast converging path integrals for time-dependent potentials: I. Recursive calculation of short-time expansion of the propagator. J. Stat. Mech. P03004 (2011)Google Scholar
  10. 10.
    Balaz, A., Vidanovic, I., Bogojevic, A., Belic, A., Pelster, A.: Fast converging path integrals for time-dependent potentials: II. Generalization to many-body systems and real-time formalism. J. Stat. Mech. P03005 (2011)Google Scholar
  11. 11.
    Greismaier, A., Werner, J., Hensler, S., Stuhler, J., Pfau, T.: Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005)CrossRefGoogle Scholar
  12. 12.
    Lu, M., Burdick, M.Q., Youn, S.H., Lev, B.L.: Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011)CrossRefGoogle Scholar
  13. 13.
    Santos, L., Shlyapnikov, G.V., Lewenstein, M.: Roton-maxon spectrum and stability of trapped dipolar Bose-Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003)CrossRefGoogle Scholar
  14. 14.
    Pérez-García, V.M., Michinel, H., Cirac, J.I., Lewenstein, M., Zoller, P.: Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis. Phys. Rev. Lett. 77, 5320 (1996)CrossRefGoogle Scholar
  15. 15.
    Yi, S., You, L.: Trapped condensates of atoms with dipole interactions. Phys. Rev. A 63, 053607 (2001)Google Scholar
  16. 16.
    Nath, R., Santos, L.: Faraday patterns in two-dimensional dipolar Bose-Einstein condensates. Phys. Rev. A 81, 033626 (2010)Google Scholar
  17. 17.
    Nicolin, A.I.: Density waves in dipolar Bose-Einstein condensates. Proc. Rom. Acad. A 14, 38 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandru I. Nicolin
    • 1
    • 2
    • 3
  • Ionel Rata
    • 1
  1. 1.Horia Hulubei National Institute for Physics and Nuclear EngineeringMagureleRomania
  2. 2.Faculty of PhysicsUniversity of BucharestMagureleRomania
  3. 3.Faculty of PhysicsWest University of TimisoaraTimisoaraRomania

Personalised recommendations