Number Theory Algorithms on GPU Clusters

  • Emanouil AtanassovEmail author
  • Dobromir Georgiev
  • Nikolai Manev
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)


Many algorithms from Number Theory and their implementation in software are of high practical importance, since they are the building primitives of many protocols for data encryption and authentication of Internet connections. Number theory algorithms are also the basic part of cryptanalytic procedures. Many of these algorithms can be parallelized in a natural way. In this paper we describe our efforts to develop a software package that implements various Number Theory algorithms on GPU clusters and in partial our implementations of integer factorization using NVIDIA CUDA on clusters equipped with NVIDIA GPUs. Also we report results of our experiments regarding the performance of our implementation.


integer factorization GPU CUDA MPI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, D., Lang, T.: Explicite formulas database,
  2. 2.
    Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves (2008),
  3. 3.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on Graphics Cards,
  6. 6.
    Bernstein, D.J., Chen, H.-C., Cheng, C.-M., Lange, T., Niederhagen, R., Schwabe, P., Yang, B.-Y.: ECC2K-130 on NVIDIA GPUs,
  7. 7.
  8. 8.
    Dongarra, J., et al. (eds.): Sourcebook of Parallel Computing. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kaufmann Publisher, Elsevier Science (2003)Google Scholar
  9. 9.
    Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Mathematical Society 44, 393–422 (2007), zbMATHCrossRefGoogle Scholar
  10. 10.
    Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Montgomery, P.L.: Speeding the Polard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 79–99. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Zimmermann, P., Dodson, B.: 20 Years of ECM. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 525–542. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Emanouil Atanassov
    • 1
    Email author
  • Dobromir Georgiev
    • 1
  • Nikolai Manev
    • 2
  1. 1.Institute of Information and Communication Technologies, BASSofiaBulgaria
  2. 2.IMI - BAS and VSU“L.Karavelov”SofiaBulgaria

Personalised recommendations