Towards Ultrashort CE Phase Stable Pulses

  • Oleg ProninEmail author
Part of the Springer Theses book series (Springer Theses)


As discussed in Sect.  3.2, the most promising gain media for thin-disk operation are Yb:YAG and with the corresponding gain bandwidths of 9 nm and 13 nm.


Photonic Crystal Fibre Frequency Comb Pump Diode Carrier Envelope Phase Fibre Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Brabec, F. Krausz, Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, New york, 2001)Google Scholar
  3. 3.
    W.J. Tomlinson, R.H. Stolen, C.V. Shank, Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1(2), 139–149 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    T.A. Birks, J.C. Knight, P.S. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J.C. Baggett, T.M. Monro, D.J. Richardson, U. Keller, Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Opt. Lett. 28(20), 1951–1953 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    A. Steinmann, A. Killi, G. Palmer, T. Binhammer, U. Morgner, Generation of few-cycle pulses directly from a MHz-NOPA. Opt. Express 14(22), 10627–10630 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    T. Eidam, F. Röser, O. Schmidt, J. Limpert, A. Tünnermann, 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B 92, 9–12 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S.L. Stebbings, M.F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T.W. Hänsch, T. Udem, Single-pass high-harmonic generation at 20.8 Mhz repetition rate. Opt. Lett. 36(17), 3428–3430 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    T. Ganz, V. Pervak, A. Apolonski, P. Baum, 16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers. Opt. Lett. 36(7), 1107–1109 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Kuis, A. Johnson, S. Trivedi, Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique. Opt. Express 19(3), 1755–1766 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Ganz, Chirped Pulse Compression for High Energy Laser Systems at MHz Repetition Rates, Ph.D. thesis, LMU München, 2011Google Scholar
  13. 13.
    D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    S.V. Marchese, C.R. Baer, A.G. Engqvist, S. Hashimoto, D.J. Maas, M. Golling, T. Südmeyer, U. Keller, Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 16(9), 6397–6407 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)CrossRefGoogle Scholar
  16. 16.
    P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Compact diode-pumped 1.1 kW Yb:YAG innoslab femtosecond amplifier. Opt. Lett. 35(24), 4169–4171 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, A. Tünnermann, Physical origin of mode instabilities in high-power fiber laser systems. Opt. Express 20(12), 12912–12925 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    O.H. Heckl, C.J. Saraceno, C.R.E. Baer, T. Südmeyer, Y.Y. Wang, Y. Cheng, F. Benabid, U. Keller, Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power. Opt. Express 19, 19142–19149 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J.C. Travers, W. Chang, J. Nold, N.Y. Joly, P.S.J. Russell, Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28(12), A11–A26 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    C. Gohle, T.U.M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    T. Udem, R. Holzwarth, M. Zimmermann, C. Gohle, T. Hänsch, in Few-Cycle Laser Pulse Generation and Its Applications, Optical Frequency-Comb Generation and High-Resolution Laser Spectroscopy, (Springer, Berlin, 2004), pp. 295–313Google Scholar
  22. 22.
    T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T.W. Hänsch, F. Krausz, Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    H. Fattahi, C.Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt. Express 20(9), 9833–9840 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    M. Bradler, P. Baum, E. Riedle, Femtosecond continuum generation in bulk laser host materials with sub-\(\mu \)J pump pulses. Appl. Phys. B 97, 561–574 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    C. Grebing, S. Koke, B. Manschwetus, G. Steinmeyer, Common-path interferometer for incorruptible detection of the carrier-envelope phase drift, in Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008, May 2008, pp. 1–2Google Scholar
  31. 31.
    G. Tempea, R. Holzwarth, A. Apolonski, T. Hänsch, F. Krausz, in Ultrafast Lasers: Technology and Applications, Phase-Controlled Few-Cycle Light, (Marcel Dekker Inc, New York) pp. 573–610 (2002)Google Scholar
  32. 32.
    A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. Hänsch, F. Krausz, Few-cycle optical waveform synthesis. Appl. Phys. B 72, 373–376 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, G. Steinmeyer, Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nature Photon. 4, 462–465 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    F. Lücking, A. Assion, A. Apolonski, F. Krausz, G. Steinmeyer, Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method. Opt. Lett. 37(11), 2076–2078 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    S.A. Meyer, J.A. Squier, S.A. Diddams, Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency. Eur. Phys. J. D. 48(1), 19–26 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    B.R. Washburn, W.C. Swann, N.R. Newbury, Response dynamics of the frequency comb output from a femtosecond fiber laser. Opt. Express 13(26), 10622–10633 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    C.J. Saraceno, S. Pekarek, O.H. Heckl, C.R.E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, G. Huber, U. Keller, T. Südmeyer, Self-referenceable frequency comb from an ultrafast thin disk laser. Opt. Express 20(9), 9650–9656 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PhysikLudwig-Maximilians-Universität (LMU)GarchingGermany

Personalised recommendations