Towards Ultrashort CE Phase Stable Pulses
Chapter
First Online:
- 407 Downloads
Abstract
As discussed in Sect. 3.2, the most promising gain media for thin-disk operation are Yb:YAG and with the corresponding gain bandwidths of 9 nm and 13 nm.
Keywords
Photonic Crystal Fibre Frequency Comb Pump Diode Carrier Envelope Phase Fibre Compression
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.T. Brabec, F. Krausz, Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)ADSCrossRefGoogle Scholar
- 2.G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, New york, 2001)Google Scholar
- 3.W.J. Tomlinson, R.H. Stolen, C.V. Shank, Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1(2), 139–149 (1984)ADSCrossRefGoogle Scholar
- 4.T.A. Birks, J.C. Knight, P.S. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997)ADSCrossRefGoogle Scholar
- 5.P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)ADSCrossRefGoogle Scholar
- 6.T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J.C. Baggett, T.M. Monro, D.J. Richardson, U. Keller, Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Opt. Lett. 28(20), 1951–1953 (2003)ADSCrossRefGoogle Scholar
- 7.A. Steinmann, A. Killi, G. Palmer, T. Binhammer, U. Morgner, Generation of few-cycle pulses directly from a MHz-NOPA. Opt. Express 14(22), 10627–10630 (2006)ADSCrossRefGoogle Scholar
- 8.T. Eidam, F. Röser, O. Schmidt, J. Limpert, A. Tünnermann, 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B 92, 9–12 (2008)ADSCrossRefGoogle Scholar
- 9.A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S.L. Stebbings, M.F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T.W. Hänsch, T. Udem, Single-pass high-harmonic generation at 20.8 Mhz repetition rate. Opt. Lett. 36(17), 3428–3430 (2011)ADSCrossRefGoogle Scholar
- 10.T. Ganz, V. Pervak, A. Apolonski, P. Baum, 16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers. Opt. Lett. 36(7), 1107–1109 (2011)CrossRefGoogle Scholar
- 11.R. Kuis, A. Johnson, S. Trivedi, Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique. Opt. Express 19(3), 1755–1766 (2011)CrossRefGoogle Scholar
- 12.T. Ganz, Chirped Pulse Compression for High Energy Laser Systems at MHz Repetition Rates, Ph.D. thesis, LMU München, 2011Google Scholar
- 13.D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
- 14.S.V. Marchese, C.R. Baer, A.G. Engqvist, S. Hashimoto, D.J. Maas, M. Golling, T. Südmeyer, U. Keller, Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 16(9), 6397–6407 (2008)ADSCrossRefGoogle Scholar
- 15.T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)CrossRefGoogle Scholar
- 16.P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Compact diode-pumped 1.1 kW Yb:YAG innoslab femtosecond amplifier. Opt. Lett. 35(24), 4169–4171 (2010)ADSCrossRefGoogle Scholar
- 17.C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, A. Tünnermann, Physical origin of mode instabilities in high-power fiber laser systems. Opt. Express 20(12), 12912–12925 (2012)ADSCrossRefGoogle Scholar
- 18.O.H. Heckl, C.J. Saraceno, C.R.E. Baer, T. Südmeyer, Y.Y. Wang, Y. Cheng, F. Benabid, U. Keller, Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power. Opt. Express 19, 19142–19149 (2011)ADSCrossRefGoogle Scholar
- 19.J.C. Travers, W. Chang, J. Nold, N.Y. Joly, P.S.J. Russell, Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28(12), A11–A26 (2011)ADSCrossRefGoogle Scholar
- 20.C. Gohle, T.U.M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005)ADSCrossRefGoogle Scholar
- 21.T. Udem, R. Holzwarth, M. Zimmermann, C. Gohle, T. Hänsch, in Few-Cycle Laser Pulse Generation and Its Applications, Optical Frequency-Comb Generation and High-Resolution Laser Spectroscopy, (Springer, Berlin, 2004), pp. 295–313Google Scholar
- 22.T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)ADSCrossRefGoogle Scholar
- 23.R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)ADSCrossRefGoogle Scholar
- 24.D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)ADSCrossRefGoogle Scholar
- 25.J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)ADSCrossRefGoogle Scholar
- 26.A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T.W. Hänsch, F. Krausz, Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000)ADSCrossRefGoogle Scholar
- 27.J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)ADSCrossRefGoogle Scholar
- 28.H. Fattahi, C.Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt. Express 20(9), 9833–9840 (2012)ADSCrossRefGoogle Scholar
- 29.M. Bradler, P. Baum, E. Riedle, Femtosecond continuum generation in bulk laser host materials with sub-\(\mu \)J pump pulses. Appl. Phys. B 97, 561–574 (2009)ADSCrossRefGoogle Scholar
- 30.C. Grebing, S. Koke, B. Manschwetus, G. Steinmeyer, Common-path interferometer for incorruptible detection of the carrier-envelope phase drift, in Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008, May 2008, pp. 1–2Google Scholar
- 31.G. Tempea, R. Holzwarth, A. Apolonski, T. Hänsch, F. Krausz, in Ultrafast Lasers: Technology and Applications, Phase-Controlled Few-Cycle Light, (Marcel Dekker Inc, New York) pp. 573–610 (2002)Google Scholar
- 32.A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. Hänsch, F. Krausz, Few-cycle optical waveform synthesis. Appl. Phys. B 72, 373–376 (2001)ADSCrossRefGoogle Scholar
- 33.S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, G. Steinmeyer, Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nature Photon. 4, 462–465 (2010)ADSCrossRefGoogle Scholar
- 34.F. Lücking, A. Assion, A. Apolonski, F. Krausz, G. Steinmeyer, Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method. Opt. Lett. 37(11), 2076–2078 (2012)ADSCrossRefGoogle Scholar
- 35.S.A. Meyer, J.A. Squier, S.A. Diddams, Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency. Eur. Phys. J. D. 48(1), 19–26 (2008)ADSCrossRefGoogle Scholar
- 36.B.R. Washburn, W.C. Swann, N.R. Newbury, Response dynamics of the frequency comb output from a femtosecond fiber laser. Opt. Express 13(26), 10622–10633 (2005)ADSCrossRefGoogle Scholar
- 37.C.J. Saraceno, S. Pekarek, O.H. Heckl, C.R.E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, G. Huber, U. Keller, T. Südmeyer, Self-referenceable frequency comb from an ultrafast thin disk laser. Opt. Express 20(9), 9650–9656 (2012)ADSCrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2014