Skip to main content

Kerr-Lens Mode-Locked Thin-Disk Oscillator

  • Chapter
  • First Online:
Towards a Compact Thin-Disk-Based Femtosecond XUV Source

Part of the book series: Springer Theses ((Springer Theses))

  • 548 Accesses

Abstract

So far, all femtosecond thin-disk oscillators have been mode-locked by means of SESAM. The KLM technique has been proposed many times and simultaneously criticized as difficult to realize [13]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This criticism is not truly objective and is sometimes of advertising and promotional character.

  2. 2.

    At least, by the SESAMs available from Batop, ANU, Reflekron, WSI.

  3. 3.

    The calculations were done by Brons.

  4. 4.

    Preliminary simulations were done by Kalashnikov.

  5. 5.

    The control box had maximum control voltage at the moment of turning on the pump diodes. The maximum control voltage corresponds to a pump power of \({>}{500}\,\mathrm{{W}}\).

  6. 6.

    The pictures were made by Larionov.

  7. 7.

    Private discussion with Pervak.

  8. 8.
    $$\begin{aligned} {\bigtriangleup q=\frac{969\text {--}940\,\mathrm{{nm}}}{1030\text {--}940\,\mathrm{{nm}}}=0.32.} \end{aligned}$$

References

  1. U. Keller, Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003)

    Article  ADS  Google Scholar 

  2. R. Paschotta, U. Keller, Ever higher power from mode-locked lasers. Opt. Photon. News 14(5), 50–54 (2003)

    Article  ADS  Google Scholar 

  3. U. Keller, Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B 100, 15–28 (2010)

    Article  ADS  Google Scholar 

  4. S.A. Akhmanov, SYu. Nikitin, Physical Optics (Clarendon Press, Oxford, 1997)

    Google Scholar 

  5. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic, Boston, 2007)

    Google Scholar 

  6. D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16(1), 42–44 (1991)

    Article  ADS  Google Scholar 

  7. M. Piché, Beam reshaping and self-mode-locking in nonlinear laser resonators. Opt. Commun. 86(2), 156–160 (1991)

    Article  ADS  Google Scholar 

  8. E.G. Lariontsev, V.N. Serkin, Possibility of using self-focusing for increasing contrast and narrowing of ultrashort light pulses. Sov. J. Quantum Electron. 5(7), 796 (1975)

    Article  ADS  Google Scholar 

  9. M. Marconi, O. Martinez, F. Diodati, Short pulse generation in solid state lasers by a novel passive technique. Opt. Commun. 63(3), 211–216 (1987)

    Article  ADS  Google Scholar 

  10. F. Krausz, M. Fermann, T. Brabec, P. Curley, M. Hofer, M. Ober, C. Spielmann, E. Wintner, A. Schmidt, Femtosecond solid-state lasers. IEEE J. Quantum Electron. 28(10), 2097–2122 (1992)

    Article  ADS  Google Scholar 

  11. T. Brabec, F. Krausz, Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)

    Article  ADS  Google Scholar 

  12. F. Krausz, M. Fermann, T. Brabec, P. Curley, M. Hofer, M. Ober, C. Spielmann, E. Wintner, A. Schmidt, Beam reshaping and self-mode-locking in nonlinear laser resonators. IEEE J. Quantum. Electron. 28(10), 2097–2122 (1992)

    Article  ADS  Google Scholar 

  13. P.F. Moulton, Spectroscopic and laser characteristics of Ti:\({\rm {Al}}_2{\rm {O}}_3\). J. Opt. Soc. Am. B 3(1), 125–133 (1986)

    Article  ADS  Google Scholar 

  14. G. Cerullo, S.D. Silvestri, V. Magni, Self-starting Kerr-lens mode locking of a Ti:sapphire laser. Opt. Lett. 19(14), 1040–1042 (1994)

    Article  ADS  Google Scholar 

  15. D. Huang, M. Ulman, L.H. Acioli, H.A. Haus, J.G. Fujimoto, Self-focusing-induced saturable loss for laser mode locking. Opt. Lett. 17(7), 511–513 (1992)

    Article  ADS  Google Scholar 

  16. V.L. Kalashnikov, V.P. Kalosha, I.G. Poloyko, V.P. Mikhailov, Optimal resonators for self-mode locking of continuous-wave solid-state lasers. J. Opt. Soc. Am. B 14(4), 964–969 (1997)

    Article  ADS  Google Scholar 

  17. E. Wintner, E. Sorokin, I. Sorokina, Laser system for producing ultra-short light pulses. US Patent 6363090B1 (2002)

    Google Scholar 

  18. B. Henrich, R. Beigang, Self-starting Kerr-lens mode locking of a Nd:YAG-laser. Opt. Commun. 135, 300–304 (1997)

    Article  ADS  Google Scholar 

  19. G.P.A. Malcolm, A.I. Ferguson, Self-mode locking of a diode-pumped Nd:YLF laser. Opt. Lett. 16(24), 1967–1969 (1991)

    Article  ADS  Google Scholar 

  20. Y.M. Liu, K.W. Sun, P.R. Prucnal, S.A. Lyon, Simple method to start and maintain self-mode-locking of a Ti:sapphire laser. Opt. Lett. 17(17), 1219–1221 (1992)

    Article  ADS  Google Scholar 

  21. L. Turi, F. Krausz, Amplitude modulation mode locking of lasers by regenerative feedback. Appl. Phys. Lett. 58(8), 810–812 (1991)

    Article  ADS  Google Scholar 

  22. I.P. Bilinsky, R.P. Prasankumar, J.G. Fujimoto, Self-starting mode locking and Kerr-lens mode locking of a Ti:\({\rm {Al}}_2{\rm {O}}_3\) laser by use of semiconductor-doped glass structures. J. Opt. Soc. Am. B 16, 546–549 (1999)

    Article  ADS  Google Scholar 

  23. D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24(9), 631–633 (1999)

    Article  ADS  Google Scholar 

  24. http://www.femtolasers.com/Oscillator.50.0.html

  25. C.J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O.H. Heckl, C.R.E. Baer, M. Golling, T. Südmeyer, U. Keller, Sesams for high-power oscillators: design guidelines and damage thresholds. IEEE J. Quantum Electron. 18, 29–41 (2012)

    Article  Google Scholar 

  26. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V.L. Kalashnikov, A. Apolonski, F. Krausz, High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36(24), 4746–4748 (2011)

    Article  ADS  Google Scholar 

  27. S. Uemura, K. Torizuka, Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser. Jap. J. Appl. Phys. 50(1), 010201 (2011)

    Article  ADS  Google Scholar 

  28. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, Ultrafast ytterbium-doped bulk lasers and laser amplifiers. Appl. Phys. B 69, 3–17 (1999)

    Article  ADS  Google Scholar 

  29. V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I.B. Angelov, M.K. Trubetskov, A.V. Tikhonravov, F. Krausz, High-dispersive mirrors for high power applications. Opt. Express 20(4), 4503–4508 (2012)

    Article  ADS  Google Scholar 

  30. R. Adair, L.L. Chase, S.A. Payne, Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337–3350 (1989)

    Article  ADS  Google Scholar 

  31. V.L. Kalashnikov, E. Sorokin, I.T. Sorokina, Mechanisms of spectral shift in ultrashort-pulse laser oscillators. J. Opt. Soc. Am. B 18(11), 1732–1741 (2001)

    Article  ADS  Google Scholar 

  32. V.L. Kalashnikov, E. Sorokin, S. Naumov, I.T. Sorokina, Spectral properties of the Kerr-lens mode-locked \({\rm {Cr}}^{4+}\): YAG laser. J. Opt. Soc. Am. B 20(10), 2084–2092 (2003)

    Article  ADS  Google Scholar 

  33. V. Magni, Multielement stable resonators containing a variable lens. J. Opt. Soc. Am. A 4(10), 1962–1969 (1987)

    Article  ADS  Google Scholar 

  34. S.A. Meyer, J.A. Squier, S.A. Diddams, Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency. Eur. Phys. J. D 48(1), 19–26 (2008)

    Article  ADS  Google Scholar 

  35. T. Ganz, V. Pervak, A. Apolonski, P. Baum, 16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers. Opt. Lett. 36(7), 1107–1109 (2011)

    Article  Google Scholar 

  36. H. Fattahi, C.Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt. Express 20(9), 9833–9840 (2012)

    Article  ADS  Google Scholar 

  37. A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012)

    Article  ADS  Google Scholar 

  38. D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with \(41\,\upmu {\rm {J}}\) pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)

    Article  ADS  Google Scholar 

  39. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D.H. Sutter, T. Dekorsy, Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Opt. Express 16(25), 20530–20539 (2008)

    Article  ADS  Google Scholar 

  40. K. Tamura, J. Jacobson, E.P. Ippen, H.A. Haus, J.G. Fujimoto, Unidirectional ring resonators for self-starting passively mode-locked lasers. Opt. Lett. 18(3), 220–222 (1993)

    Article  ADS  Google Scholar 

  41. J. Weitenberg, P. Rußbüldt, T. Eidam, I. Pupeza, Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity. Opt. Express 19(10), 9551–9561 (2011)

    Article  ADS  Google Scholar 

  42. R. Paschotta, Beam quality deterioration of lasers caused by intracavity beam distortions. Opt. Express 14(13), 6069–6074 (2006)

    Article  ADS  Google Scholar 

  43. Q. Zhang, B. Ozygus, H. Weber, Degeneration effects in laser cavities. Eur. Phys. J. Appl. Phys. 6, 293–298 (1999)

    Article  ADS  Google Scholar 

  44. M.A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, T. Graf, High-power radially polarized Yb:YAG thin-disk laser with high efficiency. Opt. Express 19(6), 5093–5103 (2011)

    Article  ADS  Google Scholar 

  45. S.H. Cho, F.X. Kärtner, U. Morgner, E.P. Ippen, J.G. Fujimoto, J. Cunningham, W.H. Knox, Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:\({\rm {Al}}_2{\rm {O}}_3\) laser operating with net positive and negative intracavity dispersion. Opt. Lett. 26(8), 560–562 (2001)

    Article  ADS  Google Scholar 

  46. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, A. Apolonski, Approaching the microjoule frontier with femtosecond laser oscillators. New J. Phys. 1, 216 (2005)

    Article  Google Scholar 

  47. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, U. Morgner, Passively mode-locked and cavity-dumped Yb:KY(\({\rm {WO}}_4\))\(_2\) oscillator with positive dispersion. Opt. Express 15(24), 16017–16021 (2007)

    Article  ADS  Google Scholar 

  48. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, U. Morgner, Passively mode-locked Yb:KLu\(({\rm {WO}}_4)_2\) thin-disk oscillator operated in the positive and negative dispersion regime. Opt. Lett. 33(14), 1608–1610 (2008)

    Article  ADS  Google Scholar 

  49. F. Wise, A. Chong, W. Renninger, High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon Rev. 2(1–2), 58–73 (2008)

    Article  Google Scholar 

  50. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, A. Apolonski, V.L. Kalashnikov, F. Krausz, High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime. Opt. Lett. 37(17), 3543–3545 (2012)

    Article  ADS  Google Scholar 

  51. V.L. Kalashnikov, Chirped-pulse oscillators: route to the energy-scalable femtosecond pulses, in Solid State Lasers, ed. by A.H. Al-Khursan (InTech, 2012), pp. 145–184

    Google Scholar 

  52. V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, A. Apolonski, Approaching the microjoule frontier with femtosecond laser oscillators. New J. Phys. 1, 217 (2005)

    Article  Google Scholar 

  53. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, U. Keller, Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers. Appl. Phys. B 75, 445–451 (2002)

    Article  ADS  Google Scholar 

  54. A. Fernandez, Chirped-pulse oscillators: generating microjoule femtosecond pulses at megahertz repetition rate. Ph.D. thesis, LMU München (2007)

    Google Scholar 

  55. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, A. Apolonski, Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification. Opt. Lett. 29(12), 1366–1368 (2004)

    Article  ADS  Google Scholar 

  56. http://www.ipgphotonics.com/Green_CW_Laser.htm

  57. E. Seres, J. Seres, C. Spielmann, Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Opt. Express 20(6), 6185–6190 (2012)

    Article  ADS  Google Scholar 

  58. N. Vretenar, T.C. Newell, T. Carson, P. Peterson, T. Lucas, W.P. Latham, H. Bostanci, J.J. Huddle-Lindauer, B.A. Saarloos, D. Rini, Cryogenic ceramic 277 watt Yb:YAG thin-disk laser. Opt. Eng. 51(1), 014201 (2012)

    Article  ADS  Google Scholar 

  59. D. Brown, R. Cone, Y. Sun, R. Equall, Yb:YAG absorption at ambient and cryogenic temperatures. IEEE J. Quantum Electron. 11(3), 604–612 (2005)

    Article  Google Scholar 

  60. B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 29(16), 1891–1893 (2004)

    Article  ADS  Google Scholar 

  61. http://www.dilas.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Pronin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pronin, O. (2014). Kerr-Lens Mode-Locked Thin-Disk Oscillator. In: Towards a Compact Thin-Disk-Based Femtosecond XUV Source. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01511-8_5

Download citation

Publish with us

Policies and ethics