Advertisement

SESAM Mode-Locked Thin-Disk Oscillator

  • Oleg ProninEmail author
Chapter
  • 420 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

An introduction to the principle of SESAM and parameters such as saturation fluence, relaxation time, TPA-related effects and surface quality both before and after mounting is given inSect. 4.1. A table summarizing the different SESAMs used in this work is also presented there. Section4.2 describes thermal effects in dispersive mirrors, which are also crucial for the oscillator performance. This is followed by brief technical comments on the laser design. Experimental results and simulations are presented in Sect. 4.4. They show good agreement when TPA effects are included in the theoretical model. The SESAM damage issues are also discussed there. The chapter closes with concluding comments.

Keywords

Pump Power Modulation Depth Saturable Absorber Thermal Lens Multiple Quantum Well 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Islam, E. Sunderman, C. Soccolich, I. Bar-Joseph, N. Sauer, T. Chang, B. Miller, Color center lasers passively mode locked by quantum wells. IEEE J. Quantum Electron. (1989)Google Scholar
  2. 2.
    A.F. Gibson, M.F. Kimmitt, B. Norris, Generation of bandwidth-limited pulses from a TEA CO\(_2\) laser using p-type germanium. Appl. Phys. Lett. 24(7), 306–307 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    C.L. Cesar, M.N. Islam, C.E. Soccolich, R.D. Feldman, R.F. Austin, K.R. German, Femtosecond KCl:Li and RbCl:Li color-center lasers near 2.8 \(\mu \)m with a HgCdTe multiple-quantum-well saturable absorber. Opt. Lett. 15(20), 1147–1149 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    C.E. Soccolich, M.N. Islam, M.G. Young, B.I. Miller, Bulk semiconductor saturable absorber for a NaCl color center laser. Appl. Phys. Lett. 56(22), 2177–2179 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    U. Keller, W. Knox, G. ’tHooft, Ultrafast solid-state mode-locked lasers using resonant nonlinearities. IEEE J. Quantum Electron. 28(10), 2123–2133 (1992)Google Scholar
  6. 6.
    U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Quantum Electron. 2(3), 435–453 (1996)Google Scholar
  7. 7.
    U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom, Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17(7), 505–507 (1992)Google Scholar
  8. 8.
    J.A. der Au, G.J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller, 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Opt. Lett. 25(11), 859–861 (2000)Google Scholar
  9. 9.
    B.C. Collings, J.B. Stark, S. Tsuda, W.H. Knox, J.E. Cunningham, W.Y. Jan, R. Pathak, K. Bergman, Saturable Bragg reflector self-starting passive mode locking of a Cr\(^{4+}\):YAG laser pumped with a diode-pumped Nd:YVO\(_4\) laser. Opt. Lett. 21(15), 1171–1173 (1996)Google Scholar
  10. 10.
    L. Brovelli, I. Jung, D. Kopf, M. Kamp, M. Moser, F. Kärtner, U. Keller, Self-starting soliton modelocked Ti-sapphire laser using a thin semiconductor saturable absorber. Electron. Lett. 31(4), 287–289 (1995)CrossRefGoogle Scholar
  11. 11.
    S.V. Marchese, C.R. Baer, A.G. Engqvist, S. Hashimoto, D.J. Maas, M. Golling, T. Südmeyer, U. Keller, Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 16(9), 6397–6407 (2008)Google Scholar
  12. 12.
    M.J. Lederer, V. Kolev, B. Luther-Davies, H.H. Tan, C. Jagadish, Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive mode-locking. J. Phys. D 34(16), 2455 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, J. Schneider, Subpicosecond carrier lifetimes in radiation-damaged GaAs. Appl. Phys. Lett. 58(17), 1881–1883 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    M.J. Lederer, B. Luther-Davies, H.H. Tan, C. Jagadish, M. Haiml, U. Siegner, U. Keller, Nonlinear optical absorption and temporal response of arsenic- and oxygen-implanted GaAs. Appl. Phys. Lett. 74(14), 1993–1995 (1999)Google Scholar
  15. 15.
    E.S. Harmon, M.R. Melloch, J.M. Woodall, D.D. Nolte, N. Otsuka, C.L. Chang, Carrier lifetime versus anneal in low temperature growth GaAs. Appl. Phys. Lett. 63(16), 2248–2250 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, M. Guina, Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers. Appl. Phys. B 106, 605–612 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Haiml, R. Grange, U. Keller, Optical characterization of semiconductor saturable absorbers. Appl. Phys. B 79, 331–339 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Saïssy, A. Azema, J. Botineau, F. Gires, Absolute measurement of the 1.06 \(\upmu \)m two-photon absorption coefficient in GaAs. Appl. Phys. A 15, 99–102 (1978)Google Scholar
  19. 19.
    C.J. Saraceno, O.H. Heckl, C.R.E. Baer, M. Golling, T. Südmeyer, K. Beil, C. Kränkel, K. Petermann, G. Huber, U. Keller, Sesams for high-power femtosecond modelocking: power scaling of an Yb:LuScO\(_3\) thin disk laser to 23 W and 235 fs. Opt. Express 19(21), 20288–20300 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    C.J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O.H. Heckl, C.R.E. Baer, M. Golling, T. Südmeyer, U. Keller, Sesams for high-power oscillators: design guidelines and damage thresholds. IEEE J. Quantum Electron. 18, 29–41 (2012)CrossRefGoogle Scholar
  21. 21.
    E.R. Thoen, E.M. Koontz, M. Joschko, P. Langlois, T.R. Schibli, F.X. Kärtner, E.P. Ippen, L.A. Kolodziejski, Two-photon absorption in semiconductor saturable absorber mirrors. Appl. Phys. Let. 74(26), 3927–3929 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, U. Keller, New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl. Phys. B 80, 151–158 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser (Herbert Utz Verlag, München, 2009)Google Scholar
  24. 24.
    J. Neuhaus, Passively mode-locked Yb:YAG thin-disk laser with active multipass geometry. PhD thesis, University Konstanz (2009)Google Scholar
  25. 25.
    V. Magni, Multielement stable resonators containing a variable lens. J. Opt. Soc. Am. A 4(10), 1962–1969 (1987)ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I.B. Angelov, M.K. Trubetskov, A.V. Tikhonravov, F. Krausz, High-dispersive mirrors for high power applications. Opt. Express 20(4), 4503–4508 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, A. Apolonski, High-dispersive mirrors for femtosecond lasers. Opt. Express 16(14), 10220–10233 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    H. Stoehr, N. Rehbein, A. Douillet, J. Friebe, J. Keupp, T. Mehlstäubler, H. Wolff, E. Rasel, W. Ertmer, J. Gao, A. Giesen, Frequency-stabilized Nd:YVO4 thin-disk laser. Appl. Phys. B 91(1), 29–33 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    C. Teisset, Few-cycle high-repetition-rate optical parametric amplifiers and their synchronisation schemes. PhD thesis, TU Berlin.Google Scholar
  31. 31.
    H. Fattahi, C.Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt. Express 20(9), 9833–9840 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V.L. Kalashnikov, A. Apolonski, F. Krausz, High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36(24), 4746–4748 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    V.L.Kalashnikov, Solid State Lasers, Chirped-pulse oscillators: Route to the energy-scalable femtosecond pulses pp. 145–184. InTech, (2012) http://www.intechopen.com/books/solid-state-laser/chirped-pulse-oscillators-a-route-to-the-energy-scalable-femtosecond-pulses
  35. 35.
    D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24(9), 631–633 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PhysikLudwig-Maximilians-Universität (LMU)GarchingGermany

Personalised recommendations