Skip to main content

SESAM Mode-Locked Thin-Disk Oscillator

  • Chapter
  • First Online:
Towards a Compact Thin-Disk-Based Femtosecond XUV Source

Part of the book series: Springer Theses ((Springer Theses))

  • 531 Accesses

Abstract

An introduction to the principle of SESAM and parameters such as saturation fluence, relaxation time, TPA-related effects and surface quality both before and after mounting is given inSect. 4.1. A table summarizing the different SESAMs used in this work is also presented there. Section4.2 describes thermal effects in dispersive mirrors, which are also crucial for the oscillator performance. This is followed by brief technical comments on the laser design. Experimental results and simulations are presented in Sect. 4.4. They show good agreement when TPA effects are included in the theoretical model. The SESAM damage issues are also discussed there. The chapter closes with concluding comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is interesting to compare this with a standard high-reflective dielectric mirror used inside the oscillator. Such a mirror typically consists of \(SiO_2/Ta_2O_5\) layers , in which case just 15 alternating pairs are enough to provide a reflectivity over 99.9 %.

  2. 2.

    Defined at 1/e of reflectivity drop.

  3. 3.

    Measurements of dynamic SESAM reflectivity and time response were made by Farina Schättiger and Dominik Bauer [16].

  4. 4.

    The exact value is not available.

  5. 5.

    The growing part in Fig. 4.2 can be caused by the scattered light at high incident fluences.

  6. 6.

    This is Epo-Tek EK 1000 from Epoxy Technology.

  7. 7.

    The measurements in Fig. 4.6 were done by Mikhail Larionov.

  8. 8.

    More systematic investigation of the surface of epoxy-mounted chips was not performed.

  9. 9.

    The measurements in Fig. 4.7 were done by Dominik Bauer.

  10. 10.

    \(\lambda \) is 1000 nm

  11. 11.

    High-quality Layertec mirrors for instance.

  12. 12.

    Sometimes the term self-Q-switching also means passive Q-switching.

  13. 13.

    By Vladimir Kalashnikov.

  14. 14.

    The calculations were done by Vladimir Kalashnikov.

References

  1. M. Islam, E. Sunderman, C. Soccolich, I. Bar-Joseph, N. Sauer, T. Chang, B. Miller, Color center lasers passively mode locked by quantum wells. IEEE J. Quantum Electron. (1989)

    Google Scholar 

  2. A.F. Gibson, M.F. Kimmitt, B. Norris, Generation of bandwidth-limited pulses from a TEA CO\(_2\) laser using p-type germanium. Appl. Phys. Lett. 24(7), 306–307 (1974)

    Article  ADS  Google Scholar 

  3. C.L. Cesar, M.N. Islam, C.E. Soccolich, R.D. Feldman, R.F. Austin, K.R. German, Femtosecond KCl:Li and RbCl:Li color-center lasers near 2.8 \(\mu \)m with a HgCdTe multiple-quantum-well saturable absorber. Opt. Lett. 15(20), 1147–1149 (1990)

    Article  ADS  Google Scholar 

  4. C.E. Soccolich, M.N. Islam, M.G. Young, B.I. Miller, Bulk semiconductor saturable absorber for a NaCl color center laser. Appl. Phys. Lett. 56(22), 2177–2179 (1990)

    Article  ADS  Google Scholar 

  5. U. Keller, W. Knox, G. ’tHooft, Ultrafast solid-state mode-locked lasers using resonant nonlinearities. IEEE J. Quantum Electron. 28(10), 2123–2133 (1992)

    Google Scholar 

  6. U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Quantum Electron. 2(3), 435–453 (1996)

    Google Scholar 

  7. U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom, Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17(7), 505–507 (1992)

    Google Scholar 

  8. J.A. der Au, G.J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller, 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Opt. Lett. 25(11), 859–861 (2000)

    Google Scholar 

  9. B.C. Collings, J.B. Stark, S. Tsuda, W.H. Knox, J.E. Cunningham, W.Y. Jan, R. Pathak, K. Bergman, Saturable Bragg reflector self-starting passive mode locking of a Cr\(^{4+}\):YAG laser pumped with a diode-pumped Nd:YVO\(_4\) laser. Opt. Lett. 21(15), 1171–1173 (1996)

    Google Scholar 

  10. L. Brovelli, I. Jung, D. Kopf, M. Kamp, M. Moser, F. Kärtner, U. Keller, Self-starting soliton modelocked Ti-sapphire laser using a thin semiconductor saturable absorber. Electron. Lett. 31(4), 287–289 (1995)

    Article  Google Scholar 

  11. S.V. Marchese, C.R. Baer, A.G. Engqvist, S. Hashimoto, D.J. Maas, M. Golling, T. Südmeyer, U. Keller, Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 16(9), 6397–6407 (2008)

    Google Scholar 

  12. M.J. Lederer, V. Kolev, B. Luther-Davies, H.H. Tan, C. Jagadish, Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive mode-locking. J. Phys. D 34(16), 2455 (2001)

    Article  ADS  Google Scholar 

  13. M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, J. Schneider, Subpicosecond carrier lifetimes in radiation-damaged GaAs. Appl. Phys. Lett. 58(17), 1881–1883 (1991)

    Article  ADS  Google Scholar 

  14. M.J. Lederer, B. Luther-Davies, H.H. Tan, C. Jagadish, M. Haiml, U. Siegner, U. Keller, Nonlinear optical absorption and temporal response of arsenic- and oxygen-implanted GaAs. Appl. Phys. Lett. 74(14), 1993–1995 (1999)

    Google Scholar 

  15. E.S. Harmon, M.R. Melloch, J.M. Woodall, D.D. Nolte, N. Otsuka, C.L. Chang, Carrier lifetime versus anneal in low temperature growth GaAs. Appl. Phys. Lett. 63(16), 2248–2250 (1993)

    Article  ADS  Google Scholar 

  16. F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, M. Guina, Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers. Appl. Phys. B 106, 605–612 (2012)

    Article  ADS  Google Scholar 

  17. M. Haiml, R. Grange, U. Keller, Optical characterization of semiconductor saturable absorbers. Appl. Phys. B 79, 331–339 (2004)

    Article  Google Scholar 

  18. A. Saïssy, A. Azema, J. Botineau, F. Gires, Absolute measurement of the 1.06 \(\upmu \)m two-photon absorption coefficient in GaAs. Appl. Phys. A 15, 99–102 (1978)

    Google Scholar 

  19. C.J. Saraceno, O.H. Heckl, C.R.E. Baer, M. Golling, T. Südmeyer, K. Beil, C. Kränkel, K. Petermann, G. Huber, U. Keller, Sesams for high-power femtosecond modelocking: power scaling of an Yb:LuScO\(_3\) thin disk laser to 23 W and 235 fs. Opt. Express 19(21), 20288–20300 (2011)

    Article  ADS  Google Scholar 

  20. C.J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O.H. Heckl, C.R.E. Baer, M. Golling, T. Südmeyer, U. Keller, Sesams for high-power oscillators: design guidelines and damage thresholds. IEEE J. Quantum Electron. 18, 29–41 (2012)

    Article  Google Scholar 

  21. E.R. Thoen, E.M. Koontz, M. Joschko, P. Langlois, T.R. Schibli, F.X. Kärtner, E.P. Ippen, L.A. Kolodziejski, Two-photon absorption in semiconductor saturable absorber mirrors. Appl. Phys. Let. 74(26), 3927–3929 (1999)

    Article  ADS  Google Scholar 

  22. R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, U. Keller, New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl. Phys. B 80, 151–158 (2005)

    Article  ADS  Google Scholar 

  23. M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser (Herbert Utz Verlag, München, 2009)

    Google Scholar 

  24. J. Neuhaus, Passively mode-locked Yb:YAG thin-disk laser with active multipass geometry. PhD thesis, University Konstanz (2009)

    Google Scholar 

  25. V. Magni, Multielement stable resonators containing a variable lens. J. Opt. Soc. Am. A 4(10), 1962–1969 (1987)

    Article  ADS  Google Scholar 

  26. http://www.rp-photonics.com/powerscalingoflasers.html

  27. V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I.B. Angelov, M.K. Trubetskov, A.V. Tikhonravov, F. Krausz, High-dispersive mirrors for high power applications. Opt. Express 20(4), 4503–4508 (2012)

    Article  ADS  Google Scholar 

  28. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, A. Apolonski, High-dispersive mirrors for femtosecond lasers. Opt. Express 16(14), 10220–10233 (2008)

    Article  ADS  Google Scholar 

  29. H. Stoehr, N. Rehbein, A. Douillet, J. Friebe, J. Keupp, T. Mehlstäubler, H. Wolff, E. Rasel, W. Ertmer, J. Gao, A. Giesen, Frequency-stabilized Nd:YVO4 thin-disk laser. Appl. Phys. B 91(1), 29–33 (2008)

    Article  ADS  Google Scholar 

  30. C. Teisset, Few-cycle high-repetition-rate optical parametric amplifiers and their synchronisation schemes. PhD thesis, TU Berlin.

    Google Scholar 

  31. H. Fattahi, C.Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt. Express 20(9), 9833–9840 (2012)

    Article  ADS  Google Scholar 

  32. T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)

    Article  ADS  Google Scholar 

  33. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V.L. Kalashnikov, A. Apolonski, F. Krausz, High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36(24), 4746–4748 (2011)

    Article  ADS  Google Scholar 

  34. V.L.Kalashnikov, Solid State Lasers, Chirped-pulse oscillators: Route to the energy-scalable femtosecond pulses pp. 145–184. InTech, (2012) http://www.intechopen.com/books/solid-state-laser/chirped-pulse-oscillators-a-route-to-the-energy-scalable-femtosecond-pulses

  35. D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24(9), 631–633 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Pronin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pronin, O. (2014). SESAM Mode-Locked Thin-Disk Oscillator. In: Towards a Compact Thin-Disk-Based Femtosecond XUV Source. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01511-8_4

Download citation

Publish with us

Policies and ethics